
l L LAU

RADC-TR-88-127
Final Technical Report
June 1988

AD-A204 402

THE SECURE DISTRIBUTED
OPERATING SYSTEM DESIGN
PROJECT DTIC

- -C-7;- IE

FEB 0 6 1983
BBN Laboratories Inc.

Stephen T. Vinter, Thomas A. Casey, Kathleen A. Huber

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss AFB, NY 13441-5700

C j -

mmmm~~ 0mmG4 ' t -- i

his report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Service (N IS). At

NTIS it will be releasable to the general public, including foreig:i nations.

PRADC-TR-88-127 has been reviewed and is approved for publication.

EILIE J. SIARKIFWICZ

Project Engineer

A0 PROV E D: , ,,.

RAYMOND P. URTZ, JR.
Technical Director

[irectorate of Command & Control

POR THE COMM'ANDER:

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COTD) Griffiss AFB NY 13441-5700. This will assist us

in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices

on a specific doucment require that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE 0MB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.
N/A

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
BBN Report No. 6144 RADC-TR-88-127

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

BBN Laboratories, Inc. (if applicable) Rome Air Development Center (CORD)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
10 Moulton Street
Cambridge MA 02238-0001 Criffiss APE NY 13441-5700

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) F30602-85-C-0056

Rome Air Development Center COTD
Sc. ADDRESS (City, State, and ZIPCode) '0. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNITGriffiss AFB NY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO

35167C 1069 01 01
11. TITLE (Include Security Classification)
THE SECURE DISTRIBUTED OPERATING SYSTEM DESIGN PROJECT

12. PERSONAL AUTHOR(S)
Stephen T. Vinter, Thomas A. Casey, Kathleen A. Huber *

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM May 85 TO Sep 87 June 1988 402

16. SUPPLEMENTARY NOTATION
*Subcontractors: Odyssey Research Associates - Authors are D.G. Weber, Ra iohan
Varadarajan, David Rosenthal, Bob Lubarsky, Stanley Perlo, Daryl McCullough (over)
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP_-. Multilevel Secure Systems ,
12 05 1 Trusted Operating Systems

Distributed Operating Systems .. _-L. "
19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This report discusses some issues in distributed system security in the context of the
design of a secure distributed operating system (SDOS). The design is targeted for an Al
rating, as per DoD 5200.28-STD. Some new developments in formal verification methods are
reported. Distributed system security is contrasted with single-host and network security,
and described in the context of the "Trusted Network Interpretation" (NCSC-TG-005).
Problems unique to distributed system security are discussed. AsL argument is made for
implementing security features in higher protocol layers, corresponding roughly to the
Session through Application layers of the OSI model. A new security policy, based on
message-passing rather than reads and writes, is presented. The formal model, functional
description, and a formal top level specification are also presented.-)

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 AQSTRA.T_ EURITY CLASSIFICATION
Q UNCLASSIFIED/UNLIMITED 03 SAME AS RPT. C DTIC USERS UN; LASI EUDR

22a NAME OF RESPONSIBLE INDIVIDUAL 2 lb. TE EPHONE (Include Area Code) 22c. OFFICE SYMBOL
Emilie J. Siarkiewicz (315) 330-2158 RADC/COTD

DO Form 1473, JUN 86 Previous editions are obsolete. SECU ;kLA , ATION OE THIS PAGE

UNCL.ASS IFIlED

Block 16 (Continued)

BBN Communications Corporation- Author is John Linn

UNCLASSIFIED

Contents

Executive Surunary xi

Revision History xiii

I Introduction I

1.1 Overview 1

1.2 Security 2

1.3 Project Direction 3

1.3.1 Phase 1: Narrowing the Orientation of the Project 4

1.3.2 Phase 1I: Decomposing the Problem 4

1.3.2.1 Security Requirements 5

1.3.2.2 Security and Distributed System Functionality 6

1.3.2.3 Choice of Mechanisms 6

1.3.3 Phases III and IV: Policy and Design 7

1.3.3.1 The Policy 7

1.3.3.2 The Design 9

1.3.4 Phase V: Formalization 10

1.3.4.1 Formal Model11

1.3.4.2 Formal Design Specification11

1.4 Distributed Operating Systems 12

1.5 Distributed System Security Problems 14

1.5.1 Objects and Managers 14

1.5.2 Communication and Identification Integrity 14

CONTENTS

1.5.3 System Environment 15

1.5.4 Configuration and Security Management 15

1.5.5 Feedback Applications 15

2 Policy 17

2.1 The Security Policy 17

2.1.1 Motivation 19

2.1.1.1 The C2 Internet Experiment 20

2.1.1.2 Threats and Policy Requirements 21

2.1.1.3 Assurance 23

2.1.2 A Generic Policy for Multi-Level Security 24

2.1.2.1 Bell-LaPadula and Message-Passing 24

2.1.2.2 A Policy for Message-Passing Operations 26

2.1.2.3 A Policy for MLS Entities 27

2.1.2.4 Additional Rules and Comments for Mandatory Policy . 31

2.1.3 Instantiated Policy for SDOS 33

2.1.3.1 SDOS Entities 34

2.1.3.2 Mandatory Policy 36

2.1.3.3 Discretionary Policy 38

2.1.3.4 Configuration Policy 40

2.2 Assigning Values to the Security Policy Parameters 48

2.2.1 Life-Cycle Phases 48

2.2.1.1 Development 48

2.2.1.2 Installation 49

2.2.1.3 Normal Operation 50

2.2.1.4 Modification 50

2.2.1.5 De-installation 50

2.2.2 Assigning Security Labels 51

2.2.2.1 Security Levels 51

2.2.2.2 Integrity Levels 52

CONTENTS L

2.2.2.3 Level Sets for MLS Entities..................... 55

2.2.3 Strict vs. Flexible Assignments. 56

2.3 The Formal Model. 57

2.3.1 Approach 57

2.3.2 The Language of the Formal Model 58

2.3.2.1 Types 58

2.3.2.2 Functions. 59

2.3.2.3 Policy. 60

2.3.3 Implementation and Verification 61

2.3.4 Notation. 62

2.3.5 Model. 64

2.3.5.1 Types and Restrictions on Types 64

2.3.5.2 Functions and Restrictions on Functions. 68

2.3.5.3 Policy. 77

3 Design 83

3.1 The Functional Description 83

3.1.1 Introduction 83

3.1.1.1 SDOS Implementation Strategy. 83

3.1.1.2 System Environment 87

3.1.1.3 The Approach. 89

3.1.2 Principles Underlying SDOS Functions. 91

3.1.2.1 Introduction 91

3.1.2.2 Object Management 93

3.1.2.3 Process Management 94

3.1.2.4 Interprocess Communication (IPC). 95

3.1.2.5 Secure Information Transfer 96

3.1.2.6 Discretionary Access Control. 97

3.1.2.7 Symbolic Naming 100

3.1.2.8 User Interfaces 101

iv CONTENTS

3.1.2.9 Controlled Software Development 103

3.1.2.10 Configuration, Monitoring and Control (CMC)104

3.2 Assured COS Support 105

3.2.1 Alternative Approaches to Integration 106

3.2.1.1 Approach I 106

3.2.1.2 Approach II 107

3.2.2 Examples of SDOS Integration with an MLS COS 108

3.2.2.1 Hosting SDOS on GEMSOS 109

3.2.2.2 Hosting SDOS on KeyKOS 109

3.3 Communications Layering 110

3.3.1 OSI Reference Model 110

3.3.2 SDOS Protocol Hierarchy 114

3.4 Network Security 114

3.4.1 Security Services and Mechanisms 116

3.4.1.1 Security Services 117

3.4.1.2 Security Mechanisms 120

3.4.2 SDOS Network Security Approach 123

3.4.2.1 SDOS Network Security 123

3.4.2.2 Separate Versus Embedded Security Module 123

3.4.2.3 Traffic Flow Confidentiality 124

3.4.2.4 TCB Components 124

3.4.2.5 Relationship With The Trusted Network Interpretation
Document 124

3.5 Descriptive Top-Level Specification 125

3.5.1 Message Switch System Calls 125

3.5.2 Type Host 127

3.5.2.1 Security Database 127

3.5.2.2 Object Database 128

3.5.2.3 Host Monitoring and Control 130

3.5.3 Type Process 131

CONTENTS v

3.5.4 Type Principal 133

3.5.5 Type Project 134

3.5.6 Type Object 135

3.6 Design Specification 136

3.6.1 Reasons for Design Decisions 136

3.6.1.1 DAC in Managers 136

3.6.1.2 Mandatory Security 137

3.6.2 The SDOS Trusted Computing Base 139

3.6.3 Detailed Description of the Major TCB Components [43

3.6.3.1 The Message Switch 143

3.6.3.2 The Process Table 144

3.6.3.3 The Locator 144

3.6.3.4 The Host Type 145

3.6.4 Discretionary Access Control 147

3.6.4.1 Client Identities 148

3.6.4.2 Identification 152

3.6.4.3 Access Authorization 153

3.6.4.4 Initial Access Control Lists 155

3.6.4.5 Discretionary Control Assurance 156

4 Formal Methods 159

4.1 The Formal Top-Level Specification 159

4.1.1 Overview 159

4.1.2 The Kernel 160

4.1.2.1 Introduction 160

4.1.2.2 The Security Database 161

4.1.2.3 The Object Database 168

4.1.2.4 Message Switch 170

4.1.2.5 Locator 173

4.1.2.6 Process Manager 175

vi CONTENTS

4.1.2.7 Process Table............................. 177

4.1.3 The File Manager. 178

4.1.3.1 Introduction 178

4.1.3.2 Operations. 179

4.1.4 The Catalog Manager 182

4.1.4.1 Operations. 184

4.1.4.2 Other Remarks 189

4.1.5 Authentication. 189

4.1.5.1 The TIP and Authentication Manager 189

4.1.5.2 Achieving Security. 191

4.1.5.3 Authentication and System Security. 192

4.2 Verifying MLS Properties. 192

4.2.1 A New Security Methodology 193

4.2.2 Basic Theory. 194

4.2.21 Notation. 194

4.2-2.2 Processes 195

4.2.2.3 Security Properties. 196

4.2-2.4 Buffers 198

4.2.2.5 WNI and Determinism 199

4.2.2.6 Strengthening WNI 203

1.2.3 Applying the Theory to Gypsy. 206

4.2.3.1 Verifying WNI using Gypsy 208

4.2.3.2 Gypsy Subprocedures. 215

4.2.4 Extensions to the Theory. 220

4.2.4.1 "True" Levels for messages220

4.2.4.2 Input-Limited Restrictive Hookup Theorem. 221

4.2.4.3 Limited Insecurity. 224

4.3 Verification of the FTLS.231

4.3.1 Overview.231

4.3.2 Verifying the File Manager design 232

CONTENTS vii

4.3.2.1 A Brief Recap of the design 232

4.3.3 Verifying the Catalog Manager Specification 234

4.3.4 Verifying the Kernel specification 236

4.3.4.1 Intuitive understanding of kernel security 236

4.3.4.2 Reasons for not conducting formal verification 237

4.3.5 Proof of processes involved in Authentication 238

4.3.5.1 TIP specifications 238

4.3.5.2 Authentication Specifications 241

4.3.5.3 Message Switch Assumptions 242

4.3.5.4 External Assumptions 242

4.3.5.5 Authentication Manager Proof 243

4.3.5.6 Proof of restriction for the TIP (including the Filter) . . 244

4.3.5.7 Implementation Considerations 246

4.3.5.8 Composability of the User and the TIP 246

4.3.6 Concluding Remarks 247

4.3.6.1 Limitations on users 247

4.3.6.2 Conclusion 248

5 Final Report 249

5.1 Project Goals and Accomplishments 249

5.1.1 Distinction Between Network and DOS Security 251

5.1.2 Contrasts Between Single-host and DOS Security 252

5.1.2.1 TCB Boundaries 252

5.1.2.2 Object References 253

5.1.3 Distributed TCB 254

5.1.4 SDOS Covert Channels 255

5.1.5 Problems Arising from Heterogeneity 257

5.1.5.1 Heterogeneous Networks 257

5.1.5.2 Heterogeneous Hosts 257

5.1.6 Problems Related to Object Replication 258

viii CONTENTS

5.2 Tasks and Lessons Learned 260

5.2.1 SDOS Security Policy 260

5.2.1.1 Read-down and Write-up 261

5.2.1.2 Object Replication 261

5.2.1.3 Restriction: Hook-up Security 262

5.2.1.4 Configuration Policy 263

5.2.2 Design 263

5.2.2.1 Overview of Design 263

5.2.2.2 Enforcing Security 265

5.2.2.3 Host Operating System Security 267

5.2.2.4 Network Security 268

5.2.3 Formal Methods 269

5.2.3.1 A New Security Methodology 269

5.3 Possible Future Directions 271

5.3.1 Prototype Implementation 271

5.3.2 Research Into Layering 271

5.3.3 Research into formal methods 272

A The Gypsy Specifications 275

A.1 Notes on the Gypsy Specification 275

A.1.1 Conventions used in the Gypsy FTLS 277

A.2 Global Type Declarations 278

A.3 Global Function Declarations 282

A.4 The File Manager Specification 283

A.4.1 Local Function, Procedure and Type Declarations 283

A.4.2 Main Procedure 290

A.5 The Catalog Manager Specification 299

A.5.1 Local Function, Procedure and Type Declarations 299

A.5.2 Main Procedure 309

A.6 Authentication 314

CONTENTS ix

A.6.1 The Authentication Manager Specification 314

A.6,2 The Terminal Interface Process Specification 320

A.7 The Kernel Specification 326

A.7.1 Local Function, Procedure and Type Declarations 326

A.7.2 The Message Switch Specification 327

A.7,3 The Security Database Specification 337

A.7.4 The Object Database Specification 345

A.7.5 The Process Manager Specification 352

A.8 The System Specification 356

B Transformed Specifications for the File Manager 358

C Glossary 375

Bibliography 379

xi

Executive Summary

This report is the final revision of a working document describing the Secure Dis-
tributed Operating System Design Project. It presents the project goals, the approach
we have adopted for solving the technical problems we have encountered, and the project
results. We have prepared this report with the expectation that it will be read by a di-
verse group of people. Its organization isolates different aspects of the project, such as
expected results, preliminary results, and technical issues, thereby facilitating the iden-
tification of the key areas of interest to its various readers. The reader who is interested
in a moderately-detailed technical summary of the project is directed to Chapter 5. Final
Report. It is addressed to a reader who has some familiarity with computer security but
who has not read the other chapters of this report.

Chapter 1 introduces and defines the problems that we are addressing. Its sections
discuss security and distributed systems in general, and the relationship between the
two, and they outline our approach to the problem.

Chapter 2. Policy, discusses the security policy in both informal and formal terms.
Section 2.1 contains the security policy for the SDOS system. The security policy section
is divided into three parts: motivation, a generic security policy, and an instantiated
security policy. The motivation presents factors that played an important role in the
formation of the policy, such as the perceived threats to the system and the important
security features the system needs to have.

The generic policy is a set of rules that provide an abstract definition of security.
The policy is based on the proposition that message passing is an appropriate model for
describing interactions in a secure distributed computer system. The abstract nature of
the generic policy is useful for gaining an intuitive understanding of secure information
flow. The core of the generic policy is based on the property called restrictiveness.
It places a constraint on possible information flow passing through multi-level secure
entities in terms of histories of message-passing operations. Entities that satisfy the
restrictiveness property separately are assured to satisfy the property as a group of
interacting entities. This hook-up property allows the system policy to be decomposed
into the policy enforced by individual components of the system.

The instantiated policy is the generic policy applied to a particular computer system,
in this case an object oriented secure distributed operating system. The instantiated
policy augments the information flow rules of the generic policy with rules constraining
the use and control of abstract resources. The rules that make up the instantiated
policy are organized into three groups: a mandatory policy, a discretionary policy, and
a configuration policy. Section 2.2 describes the assignment of values to the parameters
of the different policies.

The formal model (Section 2.3) is the formalization of the rules stated in the instan-

xii

tiated security policy. The model is intended to state the properties of the system being
formally verified. The formal model attempts to express policy constraints in terms of
the extrinsic properties of the system (i.e., its external behavior) rather than its intrin-
sic properties (i.e. internal state). By describing behavior rather than internal states
we are consistent with the philosophy behind data abstraction, and we are placing less
constraints on the system's design.

Chapter 3 contains the design for a system that implements the security policies
of Chapter 2. It contains a functional description, discussions of host and network se-
curity, a Descriptive Top-Level Specification (DTLS), and internal design details. The
functional description provides a high-level look at the components of SDOS providing
both discretionary and mandatory access control. Included in this section is a descrip-
tion of the security kernel and several object managers that provide symbolic naming,
authentication, and configuration management services.

Chapter 4, Formal Methods, contains the Formal Top-Level Specification (FTLS)
and discussions of the verification methodology and problems unique to verification of
distributed systems.

Chapter 5, Final Report, briefly restates the problem and highlights some of the
problems (and possible solutions) that are unique to distributed system security. It goes
on to summarize Chapters 2, 3, and 4, and it concludes with some suggestions for future
work in this area. As stated above, it is intended to be readable by persons having some
familiarity with computer security, who have not read the other chapters of this report.

The actual Gypsy specifications are contained in Appendix A. Appendix B contains
the transformed specification of the file manager. The transformation is a technique
described in Chapter 4 to verify the FTLS. Appendix C contains a glossary of acronyms
used in this report.

xiii

Revision History

Initial version, February 1986. Revision 1.1, July 1986:

A description of the Formal Model was added as Section 7 (causing subsequent
sections to be renumbered). A summary of the formal model was added to Section
3. The contents of Appendix B were moved to Section 6.3.4.4. Significant technical
changes were made in Sections 6.2 (A Generic Policy for Multi-level Security), and 6.3
(Instantiated Policy for SDOS). Miscellaneous changes were made in Section 5, Appendix
A, and References.

Revision 1.2, April 1987:

The Functional Description was added as Section 7 (causing subsequent sections to
be renumbered). A new section, "Assigning Values to the Security Policy Parameters"
was added as Section 9 (causing subsequent sections to be renumbered). A significant
change to the policy and formal model was made, eliminating automatic reclassification
and the request-to-read machinery. This caused Section 6.2.3 and Appendix A to be
eliminated, and numerous changes to be made throughout Sections 6 and 8 (formerly
7), especially Sections 6.2, 6.3, 8.1, 8.2.3, 8.3, and 8.5.

Revision 1.3, June 1987:

A section on Implementation Strategy (7.1.1) was added to the Functional Descrip-
tion. Editorial changes were made throughout the report, to fix typographical errors,
and to bring all references and examples into consistency with the policy and formal
model changes that were made in Revision 1.2.

Revision 2.0, October 1987:

This revision was produced with a different text-formatter than the previous revi-
sions; the new formatter has features more suitable for the mathematical notation used
in the formal specifications. Another major change is that the report has been reorga-
nized into five chapters plus an appendix. The sections were renumbered as subsections
within chapters, and some reordering has taken place. Significant new material has
been added in the areas of formal methods (FTLS and Gypsy specifications), network
and single-host security, and design details, both external and internal. Old Sections 1
through 5 make up the new Chapter 1. Old Sections 6, 8, and 9 make up the new Chap-
ter 2. Old Section 7 is part of the new Chapter 3, along with much new material. Old
section 10 was completely replaced by the new Chapter 5. Chapter 4, Formal Methods,
and Appendix A, Gypsy Specifications, are all new material.

Revision 2.1, January 1987:

'his last revision was generated at the conclusion of the project. Appendix C con-
taining a list of acronyms was added, and a number of clarifications and corrections were
made. No new sections were added.

Chapter 1

Introduction

1.1 Overview

There has been a considerable amount of both theoretical and applied work done in the
area of multi-level computer security. The majority of this effort has been directed at
the development of security policies and mechanisms for centralized computer systems.
The little work in the area of security in distributed computer systems has either been
focused on a small portion of the problem, or has been concerned with a very low level
of abstraction, such as the secure transmission of messages in a network.

The Secure Distributed Operating System Design Project, funded by the Rome Air
Development Center, was a 28 month investigation of multi-level security issues that
relate to the development of a secure distributed operating system (SDOS) using the
object-oriented Cronus DOS as a baseline. The project was a collaborative effort be-
tween Bolt Beranek and Newman Laboratories Incorporated, who have experience in the
development of distributed operating systems, and Odyssey Research Associates, whose
expertise is in the area of verification and computer security.

The goals of the project were twofold. First, we hoped to improve our understanding
of the problems of developing an SDOS that demonstrates a set of high level require-
ments, such as availability and scalability. There are a large set of problems that need to
be addressed in this context, many of which are interrelated and cannot be considered
in isolation. We intended to qualitatively evaluate the relative importance and difficulty
of addressing each of these problems using four criteria: performance, functionality,
feasibility, and usability. We expected that such an analysis will yield insight into the
trade-offs faced by the designer of any such system.

This project was viewed as a first step in the development of an SDOS that incorpo-
rates advanced distributed system technology, including high-level resource management
and structured software architectures. Therefore, the second goal of the project was to
produce the preliminary documents required for the system implementation. These doc-
uments include the security policy (or policies), which describes the access and flow of

2 CHAPTER 1. INTRODUCTION

information in the distributed system; the formal model, The nithematical formaliza-
tion of the security policy; the formal top-level specification, developed from the sys-
tem's lesign and used to verify that the functionality of the design is consistent with
the assertions of the model; a functional description of the system, describing the major
components of the system, their architecture, and our approach toward its design; and
the design that forms the basis for a subsequent implementation.

This report serves as a repository for documents produced by the SDOS project.
As new work was produced it was included in this report. In addition, three papers,
Casey et al. 88 , [Weber87', 1Vinter 881, were published describing the results of this

effort.

1.2 Security

A secure computer system is a computer system in which all access and use of infor-
mation and other system resources requires authorization, and there is assurance that
authorization is performed correctly. The rise of interest in secure computer systems
and the form these systems currently take are a result of four factors:

* Information sensitivity:
there are applications in which information is sensitive, and access to that infor-
mation needs to be controlled.

" Benefits of computers:
many of the benefits of using computer systems for processing non-sensitive infor-
mation are common to the the processing of sensitive information.

" Paper security:
a set of procedures are in place for specifying and using sensitive information in
the paper world (as opposed to the electronic world), and most secure computer
systems are modeled after these procedures.

" Automation:
computers are commonly used to automate tasks previously performed by people;
many of these tasks are critical and there must be a high level of assurance that
they are performed correctly by the computer.

Computer systems with security as a property have two advantages over other sys-
tems. First, they enhance the likelihood that information will not be compromised
or corrupted (note that information security, like software correctness, can never be
absolute in a complex system considering the major role humans play in the use of se-
cure information). Second, secure systems provide greater precision in specifying and
constraining legitimate information use. This precision contributes to overall software
correctness by decreasing the number of possible ways that information can be used
illegally.

1.3. PROJECT DIRECTION 3

We see the user of a secure computer system (i.e., the person responsible for selecting
the system and/or developing applications for it) as being concerned with two aspects
of the system. First, the user is interested in the adequacy of the system to protect
the sensitive information maintained by the applications running on the system. An
understanding of the definition of security in the context of this particular system is
needed, along with knowledge of the level of assurance that the security-related portions
of the system are correctly implemented. The definition of security is found in the
security policy of the system (see sections 1.3 and 2.1). Level of assurance is difficult
to measure quantitatively, and is derived by demonstrating that the formal specification
(implementation) of the system meets the formal model (security policy requirements).

The second aspect of a secure computer system relevant to a user is the functionality
of the system; that is, the degree to which the system can be used to implement a
software system that allows the desired use of sensitive information. This is the general
problem shared by users of all computer systems. As we will demonstrate throughout
this report the security aspects of the system have a major affect on overall system
functionality.

To determine the adequacy of security in a computer system, people commonly con-
sidered the threats anticipated to the system and mechanisms that are used to prevent
those threats. Both hardware and software mechanisms can prevent information cor-
ruption and compromise by enforcing at least two sets of rules: mandatory access rules
and discretionary access rules. These rules restrict the conditions under which infor-
mation may be accessed. Mandatory controls restrict access based on the designated
sensitivity of the information and the level of clearance of the user. Systems that allow
the manipulation and storage of information which have varying degrees of sensitivity
are referred to as multi-level secure. Discretionary controls specify how information can
be accessed by a particular user. Discretionary access privileges change dynamically at
the discretion of the subjects in the system; mandatory controls are a predefined set of
rules constraining access to system resources.

There are several secondary features that secure computer systems commonly have
which relate to mandatory and discretionary controls. These include rules concerning
how information containers are reused, how sensitivity level labels are associated with
information, how authentication is performed, and how accesses are audited. The DoD
Trusted Computer System Evaluation Criteria (DoD Criteria 85] is the authoritative
document on the classification of centralized secure computer systems based on their
features and methods of development. Though no evaluation criteria document existed
for secure distributed systems as the beginning of this effort, the Trusted Network In-
terpretation [NCSC TNI 87] arose later. This is briefly addressed in section 3.4.

1.3 Project Direction

We conceived of the project as consisting of five partially overlapping phases:

4 CHAPTER 1. INTRODUCTION

1. Narrowing the orientation of the project

2. Decomposing the project into separate areas and enumerating the important issues
in each area

3. Developing a -,ecurity policy for the SDOS

4. Developing an informal system design and system/subsystem specification

5. Formalizing the policy, producing the formal model and the formal top level spec-
ification.

Next we provide an overview of each phase.

1.3.1 Phase I: Narrowing the Orientation of the Project

Given the large scope of this project, our earliest efforts were directed at narrowing
the orientation of the project. Distributed operating systems vary widely in the set of
requirements they satisfy, the functionality they provide, and the software architectures
they support. The security problems that need to be addressed with each system depend
on the properties of the system. For example, it is easier to ensure the secure access to
information in a simple DOS that provides only fundamental services such as message
passing than in a DOS that provides a high degree of functionality, simply because of
the difference in complexity of the two systems.

We believe that developing an arbitrary SDOS will have little value because of the
heavy impact the characteristics of a DOS have on the security problems that are relevant
to the system. A more fruitful endeavor is to identify the particular DOS requirements
of interest, and address the security problems faced in the development of the system
that satisfies those requirements.

The Rome Air Development Center has been supporting the development of the
Cronus DOS at BBN since 1981. The first step in the Cronus project was to identify a set
of initial system requirements that were considered important by RADC and necessary
to exploit the potential benefits that distributed computer systems have over centralized
systems. These requirements, along with a discussion of the purpose and value of a DOS,
are the subject of section 1.4. We have narrowed the orientation of the SDOS project
by limiting ourselves to only consider systems that satisfy these distributed system
requirements.

1.3.2 Phase II: Decomposing the Problem

After narrowing the orientation of the project, we decomposed the project into a set of
distinct areas that could initially be independently investigated. The purpose of this
approach was to identify the issues relevant to the project without attempting to filter

1.3. PROJECT DIRECTION 5

them based on our evaluation criteria. In doing so, we treated the problem as a search
space and we began a breadth first search of the possible issues that might be relevant.
The results of this search form the basis for section 1.5. The decomposition yielded three
separate areas, as described in the following sections.

1.3.2.1 Security Requirements

There were two sources of ideas for the security requirements of a DOS: the results
of the work of experts in the security field, and the security requirements of a class
of applications which is representative of the applications that the DOS is intended to
support. We next look at these ideas in more detail.

A large body of work describing the important security properties of secure computer
systems is available. Several perspectives have been taken including the formation of
security policies to describe the secure use of information, the development of formal
models that can be used in the verification of a computer system, and the examination
of threats to systems and how they can be thwarted.

An effort of significance to this project is the DoD Computer Security Center at-
tempt to develop a trusted network evaluation criteria. The 1985 National Workshop
on Network Security [Workshop 85] was organized to provide input toward this effort by
over 70 of the nation's security experts. The results of the workshop were a list of issues
and position papers; these results provide a valuable snapshot of the most up-to-date
views of security experts on security in distributed systems. This work contributed to
the eventual generation of the Trusted Network Interpretation (TNI) [NCSC TNI 87]
of the Trusted Computer Security Evaluation Criteria [DoD Criteria 85]. Other rel-
evant work includes secure operating systems designed or developed, such as KSOS
'McCauley and Drongowski 79] (see [Landwehr 83] for a complete list) and security
policies, including Landwehr's MMS policy [Landwehr et al. 84], Sytek's MLO policy
'Sullivan 861, and a non-interference style hook-up security policy developed at ORA
'McCullough 87.

The purpose of developing an SDOS is to allow applications to use the resources
that span the entire computer system in a secure fashion. Occasionally some applica-
tions have their own security requirements, realized in an application security policy,
that are different than those of the operating system. The degree to which the SDOS
security policy matches the application security policy in part determines the useful-
ness of the DOS for the application. Ideally, the SDOS security policy subsumes the
application policy. If this is not the case, the SDOS should be flexible enough to al-
low additional security mechanisms to be built on top of it to satisfy more stringent
application requirements.

A set of Command and Control (C2) applications potentially needed by the Air
Force were chosen as representative applications that the SDOS is intended to support
[Berets et al. 85]. The reasons for choosing the C2 application are that they span many
types of computer systems and require survivability, scalability, and interoperability.

6 CHAPTER 1. INTRODUCTION

Second, they involve diverse aspects of the use of secure information including collection,
selection, aggregation, and analysis. Additionally, these applications involve monitoring
and controlling physical devices that collect and use secure information (e.g., radar).
Finally, the complexity and size of automated command and control systems require a
software methodology to support modular and evolvable system development.

Our results indicated two unusual aspects of these applications. First, automated
data collection yields massive amounts of data whose sensitivity is frequently time de-
pendent. An automatic downgrading facility would minimize the overclassification of
this data. Second, a full command and control system is naturally a feedback system,
consisting of four parts: collection, aggregation, analysis, and control. We hope to ei-
ther develop a policy that accommodates a command and control system of untrusted
components or develop a feasible system architecture for the application where trust is
well specified and highly constrained.

1.3.2.2 Security and Distributed System Functionality

Another area that we investigated is the impact that security requirements and mecha-
nisms will have on the wide range of functions required to make a distributed computer
system fully operational. The most obvious effect of incorporating security mechanisms
into an operating system is severe degradation of performance. For this reason, perfor-
mance is a criterion for evaluating the set of requirements and problems to be addressed,
and the set of mechanisms to be adopted.

One property secure systems should have is uniform and thorough access authoriza-
tion of all uses of system resources. Such authorization is possible only by using precise
discretionary access control within the operating system itself. An example of the need
for precise controls occurs in the monitoring and controlling of the major components
of the distributed computer system. A key component of this service is called config-
uration management (different from configuration management of the entire software
development lifecycle of the secure computer system). The configuration manager is
responsible for controlling the attributes and the state of hosts in the system, including
the system services that execute on those hosts. This component plays an important
role in a secure system, since it determines the initial state of a host and how the services
that host provides can change over time.

There are several other areas where security needs have a major impact on the
existing functionality of distributed system. These areas are discussed in detail in section
1.5.

1.3.2.3 Choice of Mechanisms

The set of mechanisms adopted in an implementation are selected for a wide range of
reasons. They include ease of implementation, anticipated performance, system model,
functionality, simplicity, development speed, and the desire to experiment. There are

1.3. PROJECT DIRECTION 7

trade-offs between any set of mechanisms. The choice between capabilities and access
control lists is an example of such a trade-off for discretionary access controls. Capa-
bilities are more complex to implement than access control lists, but they allow easy
temporary privilege transfers. Access control lists make privilege revocation easy and
facilitate the review of privileges needed to access an object on a per object basis. Which
mechanism is best depends on the system requirements and the constraints placed on
the development project.

In this project we identify many of the trade-offs between the mechanisms that are
relevant to secure system development. We used the existing Cronus system as a basis for
selecting mechanisms, for three reasons. First, since we implemented these mechanisms
we understand them better than other mechanisms. Second, a version of Cronus was
operational; this provides a head start in determining the viability of secure system
alternatives. Third, the mechanisms in Cronus were adopted because they satisfy the
basic system requirements that Cronus shares with the SDOS system being investigated.

1.3.3 Phases Ill and IV: Policy and Design

The policy and design phases were begun simultaneously, for two reasons. First, the
abstract nature of a security policy makes it difficult to determine the feasibility of
implementing the policy. This is important because of performance problems that have
characterized secure systems. We expected that the additional insight that an early
design can offer will be useful in the policy development process.

The second reason for beginning the two phases at the same time was due to the
existence of the Cronus system that could serve as the basis for the SDOS design.
Cronus represents available distributed operating system technology that, ideally, could
be applied to the SDOS development. It was imperative that we determine the viability
of using Cronus as a starting point for the system design at the earliest possible time.
With a rough version of the policy and a preliminary design of the secure system that
has evolved from the Cronus system, it would be possible to uncover any fundamental
incompatibilities that might exist.

The difficulty of concurrent policy and design development is ensuring that they
remain consistent. Therefore, an essential part of the development process was frequent
comparisons of the most recent versions of the policy and design. Next we look at the
policy and design phases separately.

1.3.3.1 The Policy

The purpose of a system's security policy is to define the meaning of security within
the system. Policies are defined at many different levels of abstraction. The higher the
abstraction, the closer it corresponds to our intuitive understanding of the meaning of
security; the lower the abstraction, the greater its complexity and the more readily the
policy can be implemented and demonstrated to be consistent with that implementation.

8 CHAPTER 1. INTRODUCTION

Since both understandability and precision/enforceability are important, we have pro-
duced a security policy with two parts: a high-level generic part that is independent of
any particular system, and a low-level instantiated part. Though a policy can generally
have many implementations, the details of the instantiated policy greatly constrain the
designs that could be securely implemented. Therefore, the low-level policy is useful for
developing a system design and later demonstrating that the design enforces the security
policy.

Security is defined in a security policy through the description of an abstract system
of entities and operations, and rules governing the conditions under which the opera-
tions may be legitimately used. The policy is formed, in part, by using an intuitive
understanding of the meaning of security. As we have described, the security rules in
the SDOS policy include mandatory and discretionary access rules. These rules roughly
correspond to rules constraining who may communicate and what information is com-
municated, respectively, in the system.

Other factors in the formation of the SDOS policy included:

" Knowledge of the problems occurring with the implementation and use of other
security policies.

" Understanding of how information will be used in the system, which we have
based on our familiarity with other secure systems and our use of C2 Internet as
t.e application domain.

" Insight into the technical distributed system issues that relate to security.

The SDOS security policy is used by application developers for expressing the security
aspects of their application and formulating its design. The application developer uses
the high-level security policy as a guide to associate security attributes with information
to be manipulated within the application and to define who and under what conditions
that information can be accessed. The low-level policy can be used during the process
of designating the software modules that comprise the application and specifying their
interaction.

How is a security policy judged to be adequate? What distinguishes a good security
policy from a poor one? These questions have not been adequately addressed in security
literature, and they remain open to discussion. When viewing a system security policy
as the foundation for secure applications, it should have two characteristics. First, the
policy should incorporate the most widely shared features of application security policies,
in order to reduce redundant mechanisms. Second, the policy should incorporate those
features needed by applications that can only be provided at or below the level of the
operating system. We hoped to look in detail at methods of evaluating policies. Section
2.1 provides the current version of the security policy, and explains why this policy differs
from the well known Bell-LaPadula model.

1.3. PROJECT DIRECTION 9

1.3.3.2 The Design

A system's design is the document used to guide the system's implementation. There
are two major aspects of the design: to present a decomposition of the system into its
functional elements, and to describe the manner in which the elements perform their
function and interact. The decomposition of a system is typically called the system's
functional description (see section 3.1); the manner of operation is called a set of mech-
anisms. Choice of both functions and mechanisms greatly determine the performance,
usability, feasibility, and capabilities of the system's implementation.

The process of creating the design involves identifying the major functions of the
system, assigning the functions to modules, determining the interaction patterns of
modules, and choosing mechanisms to implement the functions. We chose to drive the
system functionality by the basic set of DOS requirements rather than by the security
policy.

The development of a design is an iterative process, requiring experimentation with
different implementation ideas. We used performance, usability, and functionality as
the criteria for judging these ideas. Performance corresponds to expected efficiency;
measures of performance include the amount of interprocess communication, remote
communication, context switches, and rough estimates of execution time.

Usability refers to how easy a system is to use, either from the standpoint of a
software developer, a system administrator, or a user. Traditionally, secure systems
have included features that detract from the usability of the system. For example, the
AFDSC Multics system required users to log off and log back on simply to read electronic
mail. There is generally a trade-off between the usability of a system and the system's
functionality.

Feasibility refers to the ease with which a design can be implemented. The value
of a design that cannot be implemented is dubious. Because of our interest in future
implementation, we made design decisions based on how feasible they are to implement.
A common example exists in secure system development. Many operating systems and
applications have been designed which require major portions of the systems to be veri-
fied in order to satisfy the prespecified security requirements. However, the current state
of verification tools makes it untenable to rely heavily on verification of large parts of a
system.

Almost a decade of distributed system research and development has led to a fairly
firm understanding of the needed functionality of distributed systems. One example
is availability through data and functional redundancy. Another example is data con-
sistency through coordinated distributed state changes and failure recovery techniques.
What remains to be investigated are how security requirements and support for secure
information will affect DOS functionality.

The purpose of the design phase is to generate a design document. However, we
also expect this phase to yield an equally important document describing the trade-offs

10 CHAPTER 1. INTRODUCTION

pertaining to the major design alternatives uncovered during this phase. This document
will be useful to future designers of secure systems and will provide insight into the
implementation problems faced by developers of secure distributed systems.

The approach we took in developing the design was to isolate the mandatory security
mechanisms within two facilities: the mechanisms that pass messages between compo-
nents on or across hosts, and the mechanisms that allow the storage of objects in the
object database. Discretionary access checks will be performed both within object man-
agers (for abstract operations) and between object managers and the object database
(for simple read/write object operations).

1.3.4 Phase V: Formalization

Formalization is the process of using the language of mathematics to express and reason
about a system that was previously expressed informally. There are several steps taken
in the formalization process. First, the policy must be formalized: this is called a formal
model, and is presented in section 2.3. Second, the design must be formalized: this is
usually called the formal specification. Last, a formal proof of correspondence between
the formal model and the formal specification must be constructed. This proof shows
that the (formal) design correctly implements the (formal) policy.

The effort to develop an SDOS is significantly different from the design of other
distributed operating systems due to the need to have greater assurance that the system's
design meets its requirements. The need for greater assurance is based on the importance
placed on the system security requirements. As is commonly the case in the development
of secure systems, we will gain a greater precision in our analysis of the system design
by using formalization and formal verification techniques.

Conceptually, the process of formalization should begin after the system policy and
the design have been completed. In this project, however, we began formalization at
an earlier point. After the system policy was formulated, we had an informal definition
of security in the context- of the DOS and a clear idea of the direction of the design.
Beginning formalizion at this point was largely independent of the policy's initial de-
velopment. In contrast, the formal specificaticn should proceed concurrently with the
informal design development, since the two affect each other: the design drives the for-
malization of the design, and the resulting formalization and attempts at proof identify
design security flaws and other design problems that must be corrected.

The relationship between design and policy is formalized by stating them in formal
mathematical languages that allow a precise analysis of their interrelationship. There
are many languages for representing the policy and design (for example, the formaliza-
tion of the security policy can be expressed with the mathematical language of sets and
relations), but few languages have sophisticated automated tools to aid in the develop-
ment of proofs and the checking of their validity. This automated support is vital since
the design of a large system, and correspondingly the proof that it is consistent with a
policy, is complicated. We chose to use the Gypsy system [Good et al. 78] because it

1.3. PROJECT DIRECTION 11

provides a well developed environment for automated support and is widely used. Of
the widely known verification systems, Gypsy currently offers the greatest flexibility and
the most complete set of tools. This flexibility allowed the formal specification to closely
follow the actual design of the system.

1.3.4.1 Formal Model

Security is defined in terms of a system's abstract entities and its abstract operations.
The system is secure if the histories of abstract operations in which it may possibly
engage and the possible states of its abstract entities satisfy a set of constraints. The
formal model is a formal statement of these constraints.

Since the constraints of the formal model are exactly those properties to be proved
about the formal specification of our specific system, the model must involve concrete
entities and operations of the system. The formal model must therefore be a formaliza-
tion of the instantiated, system-specific, security policy. This tends to make the model
less directly understandable than the generic policy; our approach was to argue that
the forimal model is the appropriate set of constraints since it is derived from the more
intuitive security policy. Of course, since many concrete system entities are not known
at the time the policy is formulated, as much abstraction is retained in the model as is
possible.

The formal model may include both security properties and other properties of inter-
est. Security properties usually concentrate on restrictions on information flow and on
various types of access control. Other properties might include no-denial-of-service and
assertions about survivability. We chose to treat these properties as options to pursue
if the basic security properties could be demonstrated within the time bounds of this
effort. No-denial-of-service properties, in particular, are not easily stated and proven
within Gypsy.

1.3.4.2 Formal Design Specification

The system design was recast in a formal language to produce the formal specifica-
tion. The main issue involved in this translation is the level of detail of the specifi-
cation. We expect that the design and specification would incorporate high-level al-
gorithms and interface specifications between the major system components, but not
the implementation-level code. Algorithms can be expressed in Gypsy. We expect that
the more detailed levels of the specification would bear a strong syntactic resemblance
to the informal design. However, the top level of system specification, which describes
the DOS as consisting of processors executing in parallel and communicating over some
medium, cannot be directly expressed in Gypsy. The limited constructs Gypsy provides
for concurrency required that artifices be used to model the system architecture and
high level of functionality.

Since the Cronus system was used as a baseline for modeling the SDOS, we intended

12 CHAPTER 1. INTRODUCTION

to include three fundamentally different kinds of hosts in the formalized design: native
SDOS hosts; hosts supporting SDOS on a constituent operating system with known
properties; and hosts with no known properties connected to the communication medium
via a secure access machine. In the first two cases, security depends on properties
of the underlying system: the native SDOS host relies on properties of the hardware
architecture to support security, while the SDOS running on a constituent operating
system depends crucially on the properties of that operating system. These underlying
properties must appear as part of the formal proof.

The Cronus system emphasizes the operability between hardware and software com-
ponents in a system. Since SDOS, like Cronus, is expected to evolve, the details of
supporting hardware and constituent operating systems cannot be determined in ad-
vance. It was not our purpose to have the details of the design reflect a particular
architecture. The formal specification specifies a "generic" hardware architecture and a
generic constituent operating system architecture to which the formal design could be
related.

1.4 Distributed Operating Systems

The purpose of a distributed operating system is to promote and manage resource sharing
among interconnected computer systems by providing coherent and integrated tools.
Coherency and integration allow the development and use of distributed applications
that are able to exploit the advantages that multiple interconnected computer systems
have over centralized systems, without concern for the details of each computer in the
system.

The field of computer science has over a decade of experience in working with in-
terconnected computer systems. Despite this experience, there has been relatively little
progress in distributed application development. There are several reasons for this lack of
progress. Many networks consist of a heterogeneous set of computers that have incom-
patible devices, communication protocols, system software, and data representations.
The complexity of distributed software running on these systems far exceeds the com-
plexity of centralized software with similar functionality. Yet heterogeneous systems are
a necessary result of the need for specialized computers and the desire to keep up with
the quickly changing hardware technology. Distributed system applications also cover
an extremely wide range of problem areas, and no single system is appropriate for the
wide variety of system requirements.

From these observations we drew two conclusions. First, uniformity and abstraction
are essential attributes of a distributed computer system that reduces the complexity
of the system and hides the details of each computer in the system. In particular, we
were concerned with the complexity of such basic services as interprocess communica-
tion, access control, naming, data storage, and data retrieval. A general framework for
structuring and interconnecting components throughout the system is an essential means
of simplifying the system. An open system design, where applications are constructed

1.4. DISTRIBUTED OPERATING SYSTEMS 13

within the same model as operating system services, further enhances overall system
uniformity.

Second, no single, comprehensive distributed system architecture will be appropriate
for all applications. Rather, a specific set of properties are necessary to serve as the
system requirements that informally guide the system design and development. Based
on the set of applications identified by the Rome Air Development Center, we have
adopted the following properties that the distributed operating system should exhibit:

" Survivability: the integrity of data and overall system operability should not be
affected by partial failures.

" Scalability: the system architecture should accommodate the scaling of system
resources.

" Global system resource management: system resources, such as operating system
services and devices, should be controlled through a single, uniform facility for the
entire DOS.

" Interoperability: it should be possible to integrate software in a machine-independent
fashion, allowing the underlying hardware to change without redesigning and reim-
plementing applications.

There are few software architectural methodologies. In the initial Cronus system
design work we discovered that only one methodology was rich enough to support all of
the properties listed above and comprehensive enough to address all of the basic services
we were concerned with in a uniform and abstract way. This model is called the object
model iJones 781 and was adopted as the framework for structuring software .in Cronus.
Although particular Cronus mechanisms can easily be replaced by new ones, the model
is a fundamental, inseparable part of the Cronus system. SDOS is also based on the
object model.

Objects are instances of abstract data types and correspond to logically addressable
resources, such as data and physical devices. The type of each object defines the set of
operations on the object; these operations are the only means of accessing the object.
Object operations are implemented by object managers, which hide the representation
of the object from its accessors.

Abstraction is inherent in the model by hiding the representation of objects in mod-
ules having precisely defined, high-level interfaces. Uniformity derives from using the
object to represent all resources in the system including data, system services, and de-
vices. All interprocess communication is achieved by performing operations on objects,
independent of their location, managers' identities, or representation. Discretionary ac-
cess control is made uniform by mapping operations to access rights and performing
authorization on each operation invocation. Since all accessible entities are objects on
all machines, it is possible to create a global name space at both the system and user
levels. Data storage and retrieval are confined within managers, and made uniform

14 CHAPTER 1. INTRODUCTION

through manager development tools and a well defined interface to an object database
repository. Last, software extensibility derives from the creation of new object types
from existing types, with application specific interfaces.

1.5 Distributed System Security Problems

After examining literature in the security field, exploring the security needs of the C2
Internet project, and considering the impact of security on the major components of a
DOS, we were able to collect a list of problems that needed to be addressed by this
project. This collection, the result of Phase II, was then organized into a set of problem
areas. Each of the following sections corresponds to one problem area.

1.5.1 Objects and Managers

Objects are abstract entities that are accessed with operations defined on a type-by-type
basis. In contrast, information flow rules are commonly expressed as low-level operations,
such as read and write, between any pair of entities in the system. The major problem
is how to enforce information flow constraints in an efficient manner without expressing
each operation on an object in terms of reads and writes. Our early work indicated that
it may be possible to limit information flow in different ways in two different places:
between clients and managers and between managers and the object database.

Related issues include the definition and implementation of multi-level secure entities
(these "trusted" components are intuitively defined as having the ability to make sensi-
tive information available to clients under controlled circumstances), how discretionary
access controls are enforced, and how multi-level objects and types can be supported.
We believe there is an important relationship between the correct implementation of
operations on objects and the correct implementation of discretionary access controls.
Software development tools that automate much of the programming of applications
may contribute to the correct implementations of both operations and access control.

1.5.2 Communication and Identification Integrity

Secure communication between processes on separate hosts requires that the operating
system maintain the integrity of messages and information about their source of trans-
mission. The major issues are what information must be transferred with integrity, and
what techniques are available to help establish message integrity. Encryption is one
means of ensuring host-to-host message integrity, and will be an important component
in the solution to the integrity problem.

1.5. DISTRIBUTED SYSTEM SECURITY PROBLEMS 15

1.5.3 System Environment

There are two aspects of the distributed computing environment: heterogeneity caused
by the types of hosts in the system, and operating system integration caused by having
the secure, distributed operating system co-resident with existing, centralized operating
systems on particular hosts. The heterogeneity problem must be addressed in the policy,
by defining a logical mapping between the security entities (such as object labels) in one
system and comparable entities in other systems, and in the implementation. These
issues require that we define the nature of interactions between machines with different
security policies, and the resulting system-wide security policy.

Operating system integration within a single host has been successful only in non-
secure systems. The feasibility of co-residency is dependent on the hardware support
available to separate the two systems and the assurance that the policy of the secure
operating system cannot be compromised by the other system's presence.

1.5.4 Configuration and Security Management

Distributed operating systems commonly result in the distribution of control. System-
level control is evident in two ways: the management of security information and the
management of system services. These controls are commonly vested in the security
administrator and system administrator, respectively. The security administrator is re-
sponsible for defining and maintaining the security attributes of system services, objects,
and users. The system administrator is responsible for installing, monitoring, control-
ling, and removing system services. Facilities are needed to explicitly state and enforce
these roles. Issues include how machines are downloaded, the dynamicism required,
and how applications are distinguished from system services in both the policy and the
design.

1.5.5 Feedback Applications

Many of the applications of interest to the Air Force are command and control appli-
cations, where sensors are used to detect conditions in an environment, and this infor-
mation is collected and analyzed. The results of the analysis are then used to command
remote sensing and weapons systems. The command aspect of such applications are
feedback loops, and present a difficult problem in the context of application on a secure
computer system. The problem stems from the necessary flow of information downward
in security levels in the control phase of the application. This downward flow violates
the widely accepted Bell-LaPadula information flow rules that only allow upward infor-
mation flow. What is needed is a precise characterization of how information can flow
downward as part of the controlling phase of a feedback system. The issues here are
how to designate this particular instance of downward information flow as legal, and
how this designation is related to the discretionary access controls which determine who

16 CHAPTER 1. INTRODUCTION

can issue the command and control operations that result in the downward information
flow.

Chapter 2

Policy

2.1 The Security Policy

The purpose of a security policy is to define the meaning of security within a system. A
policy presents an abstract view of a system, and defines, in terms of that abstraction,
the properties that the system is intended to enforce. As much as possible, a security

policy should list the intended system properties but avoid describing mechanisms that
implement those properties. Loosely, properties describe what a system must do or not
do, whereas mechanisms tell how tasks are accomplished. Although there is no solid
dividing line between properties and mechanisms, a policy aims to express the goals of a
system in the most all-encompassing manner that is still enforceable within the computer

system. Note that a policy can state enforceable properties for many aspects of system
behavior. Since this document is specifically a security policy, it is the document that
defines the breadth of the interpretation of security.

The terms property and rule will be taken as roughly synonymous in referring to
specific elements of this overall security policy. The terms goal and requirement will
be used to describe the high-level motivations behind specific rules and properties. No
attempt at formality has been made. A formal expression of the policy in mathematical
language is provided in the formal model (see section 2.3). The security policy is a
statement of the system's security rules, described in non-mathematical language, that
can be referred to during the later system design and formalization phases. Strategies

for demonstration and verification, formal or otherwise, of the desired properties are
also discussed later (see section 4.2) and are not included as part of the policy.

Many properties are expected of distributed operating systems; some are related to

security and many others are not. It is not clear a priori which of these properties
should be included in a security policy. One approach is to adapt the security policy
of another system. However, we knew of no instance of an already existing security

policy for a DOS that would be entirely adequate. Instead, we examined a distributed
application currently under development in order to motivate our definition of security.

17

18 CHAPTER 2. POLICY

We combined this motivation with our knowledge of existing security practice in systems
other than DOSs, and with our knowledge of distributed systems technology. The result
is a security policy that should be applicable to a wide range of DOS designs.

A security policy may be defined at many different levels of abstraction. The more
abstract the level, the closer the policy corresponds to our intuitive understanding of
the meaning of security; the less abstract the level, the greater the policy's complexity
and the greater the contact between it and the secure system's implementation. Since
both understandability and detail are important, we produced a policy with two parts:

1. A high-level, generic part that is independent of any particular system;

2. A lower-level, system-specific instantiation, applying the generic part to the par-
ticular case of SDOS, and including other system-specific policy requirements.

Rather than use the well-known and widely-used Bell-LaPadula generic policy of
multi-level security [Bell and LaPadula 76], we chose to adapt the multi-level security
policy of McCullough [McCullough 87]. The resulting generic policy has substantial
differences from Bell-LaPadula. The salient features of our generic policy that distinguish
it from the Bell-LaPadula policy are:

* No distinction is made between the activity and passivity of system components in
the generic policy; any system component able to interact with other components
will be called an entity.

e Instead of using read and write operations to describe information flow in the sys-
tem, the generic policy uses a single send-message operation. This operation comes
closer to modeling network interactions between entities (e.g., hosts, processes, and
devices) in the distributed computer system.

* System entities which are expected to handle data of many security levels will
satisfy the McCullough restrictiveness property. This property emphasizes control
of information flow, rather than access control, and is greatly distinguished from
Bell-LaPadula for this reason. In addition, it is also a "hook-up property", meaning
that a collection of communicating entities satisfying the restrictiveness property
will form a larger entity which is also restrictive. By repeated hook-up of system
entities, a constraint on information flow for the entire system can be built up
from constraints on individual components. This method of decomposing global
security into local security properties is very useful for analysis of distributed
system security.

The instantiated security policy for a particular system consists of three parts: a
mandatory policy, a discretionary policy, and a configuration policy. The mandatory
policy is a straightforward application of the generic policy to the entities defined for
SDOS. The discretionary policy limits the access to abstract resources on the basis of
the inentity of the accessor. The configuration policy specifies the parameters used to

2.1. THE SECURITY POLICY 19

configure system security and the rules governing the security dynamics of the network.
The salient features of the instantiated security policy are:

" Secure information flow between entities is maintained for all object-oriented in-
teractions among users and system resources.

" It is permissible in some cases to extend the functionality of the system after its
initial configuration by adding new trusted and untrusted software to the system.

" Specially designated users are provided with the privilege to change security rel-
evant parameters governing the creation, labeling, and actions of entities. As a
result, the security policy can be customized before, during, and after the instal-
lation of the system.

" The spread of discretionary rights is curtailed, controlled by a select group of users
for each resource.

* Critical operations on system resources can be designated as requiring manual ex-
ecution only, thereby ensuring user intervention for the initiation of critical func-
tions.

In section 2.1.1 we provide a rationale for the security policy and for some of the
policy decisions we made. This rationale shows that many of the rules of the security
policy are motivated by threats to the secure operation of SDOS and of applications
which it supports. It also argues that the rules meet these threats in many cases. The
generic policy is described in section 2.1.2. In section 2.1.3 we present the instantiated
security policy, composed of rules governing information flow, access to and control of
abstract resources, and system configuration for an object oriented distributed operating
system.

2.1.1 Motivation

In the development of SDOS, we followed this progression:

1. Study a conceptual model of the system to find threats to its proper functioning;

2. Formulate a policy that prevents those threats;

3. Give assurance that the system, as designed, meets its policy.

To judge which threats are of concern for SDOS, we considered a prototypical ap-
plication developed for an existing DOS. The Command-and-Control (C2) Internet Ex-
periment, implemented at BBN, is a demonstration application intended to run under
the Cronus distributed operating system [Berets et al. 85]. There are security consider-
ations for C2 Internet that potentially affect its design, and the design of many similar

20 CHAPTER 2. POLICY

applications. Since SDOS could conceivably be used to support C2 Internet, these se-
curity considerations for C2 Internet may be used to motivate some design choices for
SDOS. In the next section, we will briefly describe the purpose of C2 Internet. In sec-
tion 2.1.1.2 we will identify some of the threats to its security, and indicate what sort of
security policy for SDOS could be used to meet these threats. In section 2.1.1.3 we will
discuss assurance of policies for secure systems, including SDOS.

2.1.1.1 The C2 Internet Experiment

The C2 Internet Experiment is intended to model some possible distributed Command-
and-Control applications. Using C2 Internet, one can demonstrate and experiment with
the features of the Cronus distributed operating system that support distributed appli-
cations. In particular, the Experiment models the collection, integration and control of
data on military ground force movements. It uses that data in several ways: to identify
targets automatically, to assess how best to apply resources to them, and to provide both
raw and processed data for commanders to make their own assessments. Although the
human involvement in the battle management process is vital, the development of C2
Internet Experiment is being driven by the need to automate parts of the process. The
quantity of data that can be collected is too great to allow human processing of all of it.
Therefore, automatic data processing is used to reduce the volume of data reaching the
user. Automatic data processing should also result in shorter response times to changing
battlefield conditions.

The C2 Internet collection of applications is divided into four phases. Each phase is
typical of one aspect of command-and-control systems.

1. Data is collected from various sensors. These are generally conceived as airborne
collectors of radar and infrared images. Typically, C2 Internet will exploit its
distributed environment by allocating several different processors to the task of
collecting sensor data.

2. Data from various sensors is fused together into a coherent, multi-sensor view of the
external world. Although data from each sensor may first be analyzed in isolation,
providing a sensor-oriented description of the battlefield, eventually data will be
combined to produce a target-oriented description, with concise target reports.
The data fusion process will also make use of intelligence data not necessarily
collected from C2 Internet sensors: weather data, prior knowledge of terrain, and
prior knowledge of infrared or radar signatures of targets.

3. Target reports are analyzed to aid in battle management functions and planning.
These activities include: extrapolating from the current battlefield situation to-
ward the future, evaluating the threat posed by observed targets, and generating
recommendations for efficient scheduling of available C2 resources.

4. Battle-management decisions are used to control future allocation of 02 Internet
resources. This results in a feedback loop in which the current analysis of the

2.1. THE SECURITY POLICY 21

battlefield situation determines how C2 resources are used, and the effectiveness
of the current plan is assessed to determine whether it needs modification.

2.1.1.2 Threats and Policy Requirements

2.1.1.2.1 Unauthorized Access: Multi-level Security Some of the data con-
tained in any command-and-control application such as the C2 Internet Experiment will
be classified. For example, intelligence data may be highly sensitive. Data contained
in the form of programs may also be classified: from them, one may be able to infer
the capabilities of friendly forces. Yet other data, possibly the weather reports, will be
unclassified. The simplest means for preventing unauthorized access is to consider all
data to be of the highest classification known to the system, and to require all users to
be cleared for that classification. The problem with this solution is the extra cost of
maintaining large amounts of classified data, and of clearing personnel to perform C2
functions.

The alternative chosen for this policy, the multi-level security (MLS) solution, has
the computer system enforce trustworthy access controls to its resources. Containers
for data will be tagged with a security classification, and processes, users, and external
devices will be tagged with a clearance level. A policy restricting access on the basis
of classification and clearance levels is called a mandatory policy. The security policy
requires that information will flow only to equal or greater classification levels. For
example, it implies that the C2 Internet data fusion process, which combines information
from sources possibly at different levels, will need a clearance level at least as great as
each of its sources.

2.1.1.2.2 Preventing Overclassification Enforcing a multi-level security policy
will at least eliminate the basic cause of overclassification: a need to change all security
labels of information in a system to the highest security level. However, overclassification
will still be common if upgrading, the relabeling of an entity to place it at a higher
security level, is frequently used to restrict access to data to a smaller group of people. A
partial solution to this tendency uses more fine-grained classification and clearance levels.
Typically, category sets, which reflect need-to-know for certain kinds of information, are
included as part of the policy for multi-level security.

A significant amount of the data processed by C2 applications becomes outdated
within a short time, hours or days at most, due to changing battlefield conditions. If
such data is archived rather than destroyed, it may not retain its original sensitivity,
and therefore it incurs the extra expense of being maintained at the overclassified level.
Downgrading, the relabeling of an entity to place it at a lower security level, on a selective
basis is a solution to this problem. Because downgrading conflicts with the basic MLS
policy rule that data flow only to equal or greater levels, policies for selective violation
of this rule are needed.

22 CHAPTER 2. POLICY

2.1.1.2.3 Manual Control One use of computer systems is to accept, manage,
and display information. When that information is sensitive, requiring use of secure
computer systems, rules controlling information flow and preventing overclassification
are important. Another important use of computers is to control other systems external
to the computer system itself. Examples of computer controlled systems in the C2
application include sensor and weapons systems. The control of sensors is expected to
be fully automated. The control of weapons systems, in many cases, will be partially
automated (e.g., for controlling direction) and partially manual (e.g., for launching).
On the other hand, many actions that have critical importance with respect to resource
usage or destruction (such as destroying archived data) may require initiation by people
in order to be performed with adequate safety. It is imperative in these situations
that this manual control not be circumvented. The policy must include rules allowing
uncircumventable manual control over resources accessible through the secure system.

2.1.1.2.4 Preventing Denial-of-Service One primary reason for automating C2
applications is to increase throughput and decrease the time from data collection to
output of battle management planning. Threats to responsiveness are called denial-of-
service.

The possibility that C2 application data could be corrupted or destroyed before it
is used in battle management threatens denial-of-service. Integrity markings will be
used to prevent unauthorized writing to or destruction of objects. The standard Biba
extension to Bell-LaPadula adds these integrity markings to the classification labels of
objects. The security policy will incorporate integrity markings that will be used to
enforce the overall intent of the Biba extension: information flows only to the same or
lower levels of integrity. Thus, for example, a process of low integrity will be prevented
from destroying high-integrity data if each is properly labeled.

The Biba integrity property clearly solves only a small part of the denial-of-service
problem. It is possible to satisfy the Biba property with a system that does no informa-
tion processing. In general, preventing denial-of-service means that eventually, or within
a certain amount of time, certain events must happen. This puhc will not address the
general denial-of-service problem further.

2.1.1.2.5 Discretionary Access Control Discretionary access controls are con-
trols on system functions based on revocable authorizations that depend on the identities
of users or processes. They are valuable for controlling the unauthorized use of informa-
tion, the modification of that information, the use of external devices and systems and
for confining the damage caused by accidental or malicious software or operator errors.
Discretionary controls are a flexible method for isolating separate SDOS applications
without assigning distinct and incompatible multi-level security labels.

The development of C2 Internet is tightly related to the philosophy of its underlying
Cronus system, which stresses object-oriented design and operating system extensibility.
This extensibility means that C2 Internet and other applications will define new abstract

2.1. THE SECURITY POLICY 23

operations unknown at the time the underlying DOS is built (although C2 applications
will generally need less frequent changes of their discretionary authorizations than will
general-purpose or text-processing systems). Because DOS extensibility is needed, we
generalized our discretionary access controls to apply to any abstract operation that can
potentially be defined.

2.1.1.2.6 Configuration Policy No practical security policy with only mandatory
and discretionary rules can be complete. One still must guarantee that any system-
specific policy parameters are properly initialized. Some examples follow:

" An MLS policy depends on proper initialization. A mandatory policy that bases
security on classification levels and clearances assumes that those levels are respon-
sibly assigned. Therefore, this policy must limit the means available for changing
those levels, and for changing other security-relevant system information such as
passwords and log-in IDs.

" The security policy will have configuration parameters other than classification lev-
els that allow it to be modified to suit a particular installation. These parameters
and rules for their modification will be fixed, system-specific features. An example
of a configuration parameter is the circumventability of the policy itself: in an
experimental mode of operation the policy is circumventable; in a tamperproof
mode it is not.

" Since C2 Internet and SDOS are both distributed systems, new rules are needed
to govern changes in the configuration of the distributed network. If new hosts are
added, or the network topology is altered, the state of security enforcement must
be re-initialized after each such change.

These special rules are defined and grouped together in a configuration policy.

2.1.1.3 Assurance

The previous section dealt with threats to secure functioning of a C2 application by
listing the components of a policy that can block those threats. This section discusses
the confidence one may have that a policy is correctly implemented.

Two documents issued by the National Computer Security Center, the Trusted Com-
puter System Evaluation Criteria (TCSEC) [DoD Criteria 85], and the Trusted Network
Interpretation (TNI) [NCSC TNI 87], are frequently mentioned in regard to evaluating
how trusted a system is. Both of these documents define a linearly ordered set of criteria
for "trust", each one more strict than the last. To evaluate "trust", both the TCSEC and
TNEC combine an evaluation of a system's security policy with an evaluation of assur-
ance that that policy is met. The word "trust", used in this sense, acts both to describe
the policy, and to describe whether an implementation meets the policy. We will avoid

24 CHAPTER 2. POLICY

confusion by using the term "trust" as little as possible. Instead, we will characterize
policies by the kinds of properties they enforce, and we will use the term assurance to
refer to the confidence gained that a particular system is a correct implementation.

Every large system satisfies properties that have little assurance. For example, dis-
cretionary access control in SDOS may apply to abstract operations whose use does
not need to be controlled in a given application. Various degrees of assurance may be
needed for various operations. However, our policy itself makes no mention of degrees
of assurance. An entity is either assured or it is not; its degree of assurance was the
concern of the formalization phases of the project.

The assurance of SDOS as a whole will depend on the assurance of some subset of
its total software. Elements of this subset will have an extra attribute that distinguishes
them. This attribute will become a parameter of the security policy, just as the clas-
sification labels of data are a parameter of the Bell-LaPadula policy. The setting and
modifying of these assurance parameters will be governed by rules of the configuration
policy.

2.1.2 A Generic Policy for Multi-Level Security

In this section, we will first summarize the Bell-LaPadula policy, and note some problems
that arise in its application. Next, we will discuss an access control policy for message-
passing. The message passing policy will distinguish between assured, multi-level secure
(MLS) entities and single-level entities with no assurance. We then state the McCullough
policy which we will apply to every MLS entity. Finally, some additional properties of
the mandatory policy are given.

The McCullough security policy, called restrictiveness here, forms the core of the
mandatory policy. It places a constraint on possible information flow through multi-level
secure entities, whether those entities are taken individually or collectively. Because
restrictiveness is defined in terms of histories of message-passing operations, we will
discuss message-passing first. At the same time, we develop special rules on message-
passing which are similar to the Bell-LaPadula *-property. These special, additional
rules are required because not every SDOS entity will be assured for every possible level
of the system. The complete generic policy is the combination of restrictiveness and the
additional rules governing message-passing.

2.1.2.1 BeU-LaPadula and Message-Passing

The most widely used policy for multi-level security has been the Bell-LaPadula policy.
Bell-LaPadula defines security in terms of abstract entities, operations, and attributes
of a system. The entities are objects, which are the passive containers of information,
and subjects, which are tht active agents that invoke operations on the objects. The
operations are read, under which data flows from an object to a subject, and write,
under which data flows from a subject to an object. Each sL bject and each object has

2.1. THE SECURITY POLICY 25

an attribute generically called a level; the possible levels are partially ordered, with an
ordering called dominates. The rules of this policy are:

" A subject may not have read access to an object unless the subject's level dominates
the object's in the partial-ordering (simple-security property).

" A subject may not have write access to an object unless the object's level dominates
the subject's (*-property)

In combination, these properties support the higher-level notion of security that
information should flow upward only in level: the first rule prevents read-ups (reading
information above a subject's security level or at an incomparable level), and the second
rule prevents write-downs (writing information below a subject's security level or at an
incomparable level).

For several reasons, the Bell-LaPadula policy is less than ideal for application to
SDOS. First, Bell-LaPadula makes a distinction between active and passive entities.
However, in a distributed computing system, many system entities (such as network
hosts themselves) are both active and passive. A policy that does not immediately
distinguish between activity and passivity may be more appropriate for SDOS.

Second, the operation of reading becomes difficult to interpret for interactions be-
tween network hosts, since it is obviously not a primitive operation. The Bell-LaPadula
policy permits one host to read information from another host which is at a lower level.
But for loosely-coupled processors (ones which have no shared memory), the actual im-
plementation of this read involves the sending of at least two messages: the first to
request the read; the second to transmit the information requested. The request to
read information from a lower level is a write-down, and therefore insecure under Bell-
LaPadula rules; yet it should be possible to build workable and secure systems which
allow this in some cases. The direction taken in this policy is to abandon read as a
primitive operation, and to define the properties needed in order that requests to read
lower-level information be secure.

In fact, the design of distributed systems, and in particular of distributed operating
systems, has often seized upon one kind of communication, message passing, as the
fundamental operation from which most other operations can be built. Therefore, to
define security for distributed systems, it should be useful to begin with a definition of
secure message passing. This will produce a security model in which the basic operations
are not read and write, as they are in Bell-LaPadula, but instead the single operation of
send-message.

The third and most important difficulty is that Bell-LaPadula is a policy on access
control, whereas what is desired is a policy on controlling information flow. Of course,
access controls are a vital mechanism for implementing controls on information flow,
but the two are not the same. It is widely recognized that even Bell-LaPadula controls
on access are not always sufficient to eliminate information flow via covert channels.

26 CHAPTER 2. POLICY

A policy which does control certain kinds of information flow, and which eliminates
non-timing covert channels, is presented in section 2.1.2.3.

2.1.2.2 A Policy for Message-Passing Operations

Consider a system of communicating entities. These entities will have both active and
passive characteristics, and therefore they can act as Bell-LaPadula subjects, objects, or
both. Examples of entities are hosts on a network, processes, files, and human users.
The basic activity of a system is message-passing among its entities. A secure system
will restrict in some way the possible information flows which result.

A single, atomic, communication between entities will sometimes be referred to as a
send-message operation or event.

The goal of the policy is to ensure that human users receive only information for
which they are authorized. As in Bell-LaPadula, this is accomplished by extending the
concept of authorization to all system entities, and ensuring that no entity contains
information for which it not authorized. Every entity will be assigned an attribute
called a label. A label will in general consist of a set of levels, each of which designates
information sensitivity. Intuitively, a label is correctly assigned if the sensitivity of
each piece of information contained in the entity is dominated by some level within the
label. Part of the definition of a secure send-message operation will then depend on a
comparison of the labels of sender and receiver entities.

In addition to its level, each entity is assigned a binary attribute: multi-level/single-
level. A multi-level secure (MLS) entity is assured to distinguish various levels of infor-
mation within itself, as long as the level of sensitivity of that data is within the MLS
entity's label. In contrast, single-level entities are not assured to distinguish varying
levels of information they contain; therefore, all data within a single-level entity must
be considered to be classified at that entity's one and only level. Special assurance
must be given for multi-level entities to prevent unauthorized mixing of information
of information at different levels. A policy to prevent this will be discussed further in
the next section. MLS entities maintain proper labeling of data by specifying for each
send-message event the level of the message sent.

In terms of these abstract entities and their attributes, the basic rules governing
send-message operations can be given as follows: Every system operation is an instance
of a send-message event from entity A with label 'A to entity B with label lB. The
sender, A, chooses a level m for the message. The following rules must hold for this
operation:

1. there is a level in 1A which equals m;

2. there is a level in IB which dominates m.

Rule 1 (given the special properties of MLS entities) ensures that each message is

2.1. THE SECURITY POLICY 27

labeled correctly. Note that if A is single-level, its label contains only one level, and that
level must equal the level of every message sent by A.

Rule 2 ensures that if the level of a message is correct, then its receiver is authorized
to know its contents. Note that if the sender and receiver are both single-level, then the
restriction in rule 2 has the same form as the Bell-LaPadula *-property.

2.1.2.3 A Policy for MLS Entities

Whenever an MLS entity initiates a send-message event, there must be some justification
for the security level it chooses for that event. This justification is expressed as a security
policy for MLS entities. We would like to guarantee that a message's level dominates
the sensitivity of all information gained when the message is received. This can be
guaranteed if, within each MLS entity, the content of a message, and even its existence,
is based only on information from equal or lower levels. Equivalently, we require that
information does not flow within an MLS entity from messages received at level X to
messages sent at level y unless y dominates x.

What does information flow mean? Although there may be many possible answers
to this question, we will use a definition of information flow based on deducibility. In-
formation flows from level x to level y if knowing the history of events directly seen at
level y allows one to deduce something about the history of events directly seen at level
x. Put another way, information does not flow from x to y if even full and complete
knowledge of events at level y implies nothing about the events at x.

The demand that nothing be implied about events at level x is too strong. There
are two basic reasons. First, knowledge of the history at y may automatically imply
something about history at x, regardless of the design of the MLS entity in question. For
example, if the sets of events at x and at y overlap, then knowledge of one automatically
implies something about the other. This could easily happen if, say, both sets contained
all public send-message events. Our definition of information flow should be weakened
to eliminate these automatic and a priori deductions.

Second, suppose that a particular MLS entity is designed to upgrade messages, to
receive a message at a low level and later send the same message content out at a higher
level. Knowing the design of this entity and a history of events at the lower level, anyone
can deduce that there must be events happening at the higher level. Yet we would like
to consider this MLS entity secure. Our definition of information flow must again be
weakened to cover just deducibility of facts about the history of messages received at
higher levels, since it is these inputs which are the source of higher-level information
flowing into the entity. Information does not flow from x to y if the history of events at
y implies nothing about the history of messages received at x.

Treating information flow as deducibility in the above sense will still be too strong
for our purposes. An event may be considered to include the time of its occurrence.
However, requiring non-deducibility security in the presence of timing information makes

28 CHAPTER 2. POLICY

most MLS designs with shared processing resources insecure. The McCullough policy for
multi-level security does not explicitly consider deducibility based on timing information,
nor do we know of multi-level security models which do. Therefore we remove the time
component of an event, and replace the set of events with the sequence of events linearly
ordered by time. This retains deducibility based on the relative order of events in a
history.

We now state the McCullough policy for MLS entities. To clarify our statement,
some notation must be introduced.

Let E be a set (the send-message events) with distinguished subsets I (the input
events received), and 0 (the output events sent). E', r', and 0' are the sets of finite
sequences of events from E, I, and 0 respectively. Let T be a subset of E' (the set of
possible histories of send-message events of an MLS entity). If a and 6 are sequences,
then a^ 0 is their concatenation. For any sequences, if a^,3 is in T, then so is a.

Let L be a partially ordered set (the security levels). Each event e from E has a
unique level 1 E L. If a is a sequence in E*, then a T I is the subsequence of a of all
of its events with levels dominated by I. In general, if S is a set of events, a T S is the
subsequence of a obtained by removing all events not in S.

Particular sequences of events will be written in angle brackets, e.g., (ei, e2 , e3).

The policy for MLS entities applies only to those entities which are always ready
to accept inputs. ("Accepting" an input may not also require that the input be acted
on; in other words, it does not eliminate entities which may fail for some reason.) The
entity described by T is input-total if for all a in T and all i in I, a (i) is in T.

An input-total process is restrictive if for all levels 1, all sequences a and -y in E-,
and all input sequences 3 and 0' in 1', whenever

A/3^^y E T and

OTI ='Tl

then there is a sequence -y' in E' such that

Q ̂ ,I^-y' E T and
-t T I = Y T I and
y'T 1Tnot- I= 0.

(The operator T not - I removes from a sequence all events with levels dominated by 1.)
The above property can now be re-stated. Let the visible events be those with levels
dominated by I. Given a possible history of send-messages for an entity, if a block of
inputs to that history is altered without altering the visible inputs, then the history with
the new inputs can be continued into a possible history containing the original sequence
of events, and without making any new invisible inputs.

For an entity which is restrictive, a user or other entity which can see only the
visible events is limited in what can be deduced about invisible inputs. Suppose that

2.1. THE SECURITY POLICY 29

the history a^ -^ is the actual behaviour of the entity. The user may conjecture that
Asome behaviour a 39 ,A 7t, produced by an altered sequence of inputs, did not happen.

But this cannot be ruled out since it would have produced the same sequence of visible
events. Therefore the user can make no deductions which eliminate such altered input
histories. It may at first appear that only special inputs may be altered (those in 0).
However, 0 may be placed at any juncture in the history, and possible histories with
any given sequence of invisible inputs may be constructed by repeated application of the
restrictiveness property. It is this limit on deducibility which allows us to claim that a
restrictive entity prevents information flows which downgrade.

The property of restrictiveness, first studied in [McCullough 871, is slightly stronger
than required simply for non-deducibility. It is also a hook-up property. Two entities
may be considered hooked together to form a new, larger entity if some input events
of one entity are identified with some output events of the other, and vice-versa. A
property is a hook-up property if it holds for two hooked-up entities when it holds for
each entity alone. (For a more precise statement of "hook-up", see section 4.2.) Since
restrictiveness is a hook-up property, if two restrictive processes communicate with one
another, then together they form a process that is itself restrictive.

The property of restrictiveness is similar in some ways to the Goguen-Meseguer
non-interference policy [Goguen and Meseguer 82]. Each is concerned with keeping a
user at level 1 from deducing information about higher levels. We have chosen to use
restrictiveness instead as our basic policy for several reasons.

The Goguen-Meseguer policy is given in terms of internal system states. This
means that the portion of the system state which contains information at level 1
must be identified. While this may always be possible, it means that the policy
cannot be completely given until many parts of the system design have already
been decided. Instead, we have identified information at levels higher than I by
identifying its source: send-message events that are inputs and whose levels are
not dominated by I.

" "Hook-up" is not well-defined in the Goguen-Meseguer model, and the histories of
events possible in the model are somewhat more limited than in the McCullough
model.

" The non-deducibility property implicit in the Goguen-Meseguer model is not a
hook-up property, while restrictiveness is.

Our policy, then, is that each MLS entity be restrictive at every level I. Because
restrictiveness is a hook-up property, the collection of all MLS entities in SDOS will
also be restrictive. This fact shows that SDOS will control information flow through the
assured part of the system. Information flow through the part of the system without
assurance is controlled by the rules of the message-passing policy.

For a diagram showing possible message passing routes in a simple system, see Figure
2.1.

30 CHAPTER 2. POLICY

RESTRICTIVE HOOK-UP

Figure 2.1: Some possible message passing in a simple system. Levels (U, C, S, and TS)
and assurance attributes are shown. Each of the four MLS entities is restrictive, as is
their hook-up.

2.1. THE SECURITY POLICY 31

2.1.2.4 Additional Rules and Cormnents for Mandatory Policy

2.1.2.4.1 Authentication The message passing policy requires that an entity sup-
ply a proper level for each message it sends. If the sender is MLS, we have also required
a policy which constrains the choice of level for each send-message. However, nothing
has been said about the means of enforcing the message passing policy when a mes-
sage sender is single-levA, or the means of enforcing that an MLS sender use only levels
within its label. The choice of mechanism is an implementation issue, and can be decided
differently in different cases:

" a sender may be assured to enforce the policy;

" a receiver may be assured to enforce the policy;

" hardware domains or other partitions may be used to prevent unauthorized mes-
sage passing;

" messages may be marked with the level of a port or other channel through which
they pass;

" a receiver may be assured to use authentication of a sender to determine a proper
level for the sender's messages.

2.1.2.4.2 Integrity The outline of secure message passing operations given above
does not explicitly mention integrity. We implicitly include integrity, in the Biba sense
rBiba 771, into the definition of levels. This expands a level into a pair with the first

component indicating sensitivity and the second component indicating integrity. This
change will not complicate the policy rules given above in any way.

2.1.2.4.3 Labels and Sets of Levels Every MLS entity has a label consisting of a
set of levels. In general, any set is permissible under this policy. However, there may be
design features which make it desirable to rule out some possible sets of levels:

" It is possible to construct an entity which is restrictive, but which cannot meet the
message passing policy unless every pair of levels in its label has a join (the least
level dominating both) that is also in the label. It follows from this rule that there
must be a level in the label of such an entity called the join level, which dominates
every level in the label. Some SDOS entities require this.

" A design in which messages are broadcast to entities at many levels may require
that the meet level, i.e., the greatest level dominated by all the others, exist in the
label of the broadcast sender.

* A design which allows a flexibly large number of levels must allow an astronom-
ical number of labels. Extra rules may be imposed on the labels just to reduce

32 CHAPTER 2. POLICY

their number. For example, every label might be required to be a range of lev-
els, including just those levels greater than some minimum and less than some
maximum.

2.1.2.4.4 Creation of New Entities SDOS operations that result in the creation
of new entities are not, in a practical sense, constructed from more fundamental or
primitive send-message operations. An entity that does not yet exist should not be able
to receive messages. However, rules that govern the secure use of "create" operations
can be obtained by fitting them into the generic send-message policy in the following
way.

Let it be supposed that all possible ertities exist already, if only potentially. Then
the actual existence of an entity can be treated merely as a binary attribute: exists/
does not exist. The creation of a new entity is a send-message operation received by a
potentially existing entity, requesting that it actually become existing. From the rules
given above, it is clear that a single-level entity may only create entities at its level and
at greater levels.

A new process P may be created to run the code C only if the level of P dominates
both the level of C and the level of its creator. In this way we avoid the need to give
special policy rules for the "create" and "execute" operations.

2.1.2.4.5 Requests to Read As noted before, a "read" operation will often not be
considered a fundamental operation in a distributed system. A "read" may be composed
of a pair of messages: a request to read, followed possibly by a response. If reading data
from a lower level is to be considered secure, as it is in Bell-LaPadula, it is because
the request to read send-message causes no harm. However, the fact that a request to
read has been sent is in general as sensitive as the reader itself, and in general it will
downgrade information. There are two approaches to this problem.

If the reader can show that the request to read is overclassified, it can be sent at a
lower level. This may be possible if the reader is MLS (in which case the read operation is
not really a read-down). It will also be possible if specific reasons justify the downgrade.
For example, a human user may intervene, and decide that the request to read need
not be classified at the reader's level. The SDOS policy permits this kind of human
intervention in some cases. (see section 2.1.3.4).

If assurance can be given that the receiver of the request to read will handle it
securely, it can be sent at the reader's level. If the receiver is MLS at the reader's level,
all is well. Otherwise, additional policy rules may be imposed on the receiver. For
example, the receiver may be assured never to send out a copy of the request to read,
and to expunge all traces of it immediately after processing. Formalizing such a policy
for requests to read may be difficuit. We have not pursued it further.

2.1. THE SECURITY POLICY 33

2.1.2.4.6 Secure Extensibility New software may be added to SDOS after it be-
comes a fielded system. Some of this software may have assurance that it meets a
security policy. If a new component is restrictive, if its assurance is as great as the as-
surance of the other restrictive SDOS components, if the new component is not required
to enforce any other aspect of the policy (such as the message passing rules), and if it
labels messages in a way recognized by the rest of the system, then it may be included in
SDOS as an MLS entity without destroying the overall security of the system. Because
restrictiveness is a hook-up property, secure extensibility is possible. This fact can be
exploited in the design of SDOS.

2.1.3 Instantiated Policy for SDOS

To arrive at a system-specific policy for SDOS, we performed the following instantiation
of the generic policy. We

* identified SDOS entities that are instances of the entities of the generic policy;

" identified SDOS operations that are instances of the generic send-message opera-
tion between pairs of SDOS entities;

" included any additional system-specific restrictions on the use of the send-message
operation that are necessary to define security. These additional restrictions will
be both discretionary access controls and fixed rules governing the system config-
uration.

In the design of SDOS, there can be any number of layers of design, with higher
layers showing greater abstraction and lower layers showing greater detail. The generic
policy can be applied at many different layers. Part of the process of instantiation
involves choosing the design layer at which the atomic components of the design are the
entities of the policy. At each higher layer, the generic policy will apply. At lower layers,
other methods of security analysis and various assumptions about the functions of the
hardware will be relied on for security.

Two layers of SDOS entities will be discussed in the policy: the user interface, and the
system layer. At the more abstract user interface layer, the SDOS is seen as an object-
oriented system, defining sets of abstract objects of various types, and defining for each
type a set of abstract operations that can be invoked on objects of the type. All objects are
entities of the SDOS policy, and represent abstract resources of the system. Examples of
objects are: files, directories, SDOS object manager processes, and so on. The policy for
this higher, more abstract layer is independent of the hardware architecture supporting
SDOS. This is also the layer at which discretionary access controls are defined.

At the second, more detailed system layer, the SDOS architecture and mechanisms
become visible. SDOS is composed of interacting entities which need not be visible at
the user interface. Applying the generic policy at this layer will produce security rules
which govern the interactions of the architectural entities.

34 CHAPTER 2. POLICY

In section 2.1.3.1 we enumerate the set of entities that make up SDOS, differentiating
between those entities that are visible at the user interface level and those that are not.
The major kinds of system component are: user, process, object, message switch (for
routing messages between entities), security database, object database, and the physical
host and network entities. In section 2.1.3.2 we present the mandatory policy in this
system, and describe how invocations of abstract operations can be achieved securely. In
section 2 1.3.3 we present the discretionary access control policy. This section states the
policy enforced by the various managers of types, and a policy for controlling the spread
of discretionary access privileges. Section 2.1.3.4 contains the configuration policy. It
consists of two parts: a set of policy parameters, used to control how SDOS is customized
for a particular environment, and a set of rules which govern how these parameters can
be changed under changes in the network connectivity.

2.1.3.1 SDOS Entities

Based on our understanding of secure systems and of distributed systems, we expect
the list below to form a complete set of the kinds of entities in SDOS. Though this list
is intended for an object-oriented system, we believe the roles and functions that the
entities represent are common to any secure distributed operating system.

e Users: human users of the system, who issue commands and are given services in
return. These are MLS entities, assured to label information only in secure ways,
but the assurance that they meet an MLS policy is outside the scope of formal
methods used on this project. Users are typically associated with client identifiers
within the system. There are several users which have specific privileges that are
fully described in section 2.1.3.4 on the configuration policy:

- System Manager: responsible for managing the operational SDOS, including
the setting of mandatory labels, and the creation and management of new
client identities.

- System Auditor: responsible for inspecting the audit record for suspicious
events, noting possible penetration attempts, and blocking confirmed at-
tempts.

- System Certifier: responsible for approving any additions to SDOS of MLS
entities other than users. New MLS software must be assured to meet the
SDOS policy at least at the level of assurance of the original SDOS verifica-
tion.

- System Controller: responsible for controlling the creation and modification
of new object types.

- System Architect: responsible for pre-configuring each SDOS system. The
System Architect will choose to have certain policy parameters permanently
enabled and others permanently disabled. The System Architect performs
his/her function before a system is fielded.

2.1. THE SECURITY POLICY 35

" User Trusted Interface Process (TIP): an MLS entity associated with each user's
terminal. In addition to being restrictive, this process is assured to correctly inter-
pret security-relevant user commands, in particular those commands performing
login, logout, and change of discretionary access rights (see section 2.1.3.3 for a
description of the discretionary policy). A TIP is responsible for authenticating
each user who logs in, and associating levels with the correctly authenticated user's
commands.

" Other User Processes: single-level entities associated with a user, but not assured
to meet any security properties. Examples are processes spawned by a user via a
TIP acting on his behalf.

" SDOS Objects: instances of abstract data types. These objects are resources that
can be addressed by users. They comprise a major portion of SDOS applications.
They include the user processes mentioned above, user data, devices, etc. Some
SDOS objects may be MLS.

" Directories: storage containers for symbolic, user-level names of objects. These
names are aliases for global names given to entities by the system. Some directories
may be MLS.

The following are SDOS entities not necessarily visible at the user interface, although
their functions will still be common to any secure distributed operating system.

" Hosts: a collection of local resources, hardware and software, needed to support
SDOS at one node of its underlying network. A host may be single-level or MLS.
The security label of a host includes the security label of every entity on that host.

" Network: interconnections between hosts. A variety of hardware and software
connections is possible. These interconnections may be either single-level or MLS
entities.

" Message Switch: controls routing of messages, in particular the messages that
result from abstract operation invocations. There is one message switch per host.
It is the primary agent responsible for enforcing the message passing policy. The
message switch has the same security label as the host on which it resides, and it
is an MLS entity if and only if that host is MLS.

" Security Database: records the label of each system entity. If an entity is assured
to satisfy some special policy, any necessary information about that policy (MLS,
discretionary, etc.) is also recorded. The database has the same security label as
the host on which it resides, and it is an MLS entity if and only if that host is
MLS.

" Object Database: stores information about SDOS objects according to their type.
The object database has the same security label as the host on which it resides,
and it is an MLS entity if and only if that host is MLS.

36 CHAPTER 2. POLICY

" Object Managers: implement the abstract operations possible for the various SDOS
types. Each type has at least one object manager which defines the operations for
that type by manipulating the data in the object database. An object manager
may be assured to enforce the discretionary policy given in a later section. An
object manager may also be an assured MLS entity.

" System Audit Record: the collection of audit data. The Audit Record is an instance
of a parnicular type of SDOS object. It is intended for use solely by the System
Auditor.

2.1.3.2 Mandatory Policy

SDOS is an object-oriented system. Users of the system conceive of its basic function
as implementing the invocation of abstract operations on abstract objects. These invo-
cations are interactions among the higher, more abstract layer of SDOS entities.

Each invocation, however, is impimented as a chain of more primitive interactions
among the SDOS entities at the more detailed, architectural layer of design. It is these
interactions which we identify as the message passing events. SDOS will be mandatorily
secure if each entity at this architectural design layer is described in terms of these events,
meets the message passing policy, and satisfies restrictiveness if it is an MLS entity. The
set of message passing events must be complete, in the sense that all interactions between
entities at this design layer must be represented.

Which entities carry the responsibility for enforcing the policy? This is strictly
a design question, rather than a policy one, but the answer will determine whether
enforcement will be decentralized, involving the assurance of many different entities, or
centralized, involving the assurance of a localized "reference monitor". In the remainder
of this section, we describe a sequence of message passing events that can typically occur
when a user invokes an abstract operation on an object and receives a result from that
invocation. The sequence of events is the more general case, in which the user and
the object of the invocation are on different hosts. While this example is framed as an
object-oriented interaction between entities, the mandatory policy could be implemented
in other ways (for example, using a remote procedure call model of entity interactions).

The following sequence of events is organized into the three phases which together
support the completion of an abstract operation on an object: invocation, execution,
and return.

1. Abstract Operation Invocation

" A user initiates an operation invocation by sending a message to his/her TIP.
This TIP has previously invoked an authentication operation for this user,
and so it knows the logged-in level of the user.

" The TIP sends a message, whose contents encode the invocation, to the mes-
sage switch on the local host. The message is sent at the level of the logged-in

2.1. THE SECURITY POLICY 37

user. (Note that an invocation could instead begin with a process other than
the TIP.)

" The message switch checks whether the level of the message is authorized.
For this check, it must find out the security label and MLS attribute of the
TIP or of the invoking process. It does this by an exchange of send-message
operations with the security database, where the levels and attributes are
stored.

* The message switch locates the destination of the message using a locate
facility within the message switch. This facility either has cached the location
of the object on which the operation was invoked, or searches for the object by
communicating with other message switches. This location activity requires
the host to exchange messages with others hosts. A remote message switch
responds to a locate request by searching its security database for the named
object and returning an acknowledgement accordingly.

" When the message switch determines the location of the object, it forwards
the message to the message switch at that location, if the remote message
switch is authorized at a level which dominates the message level. Again
the authorization is determined by an exchange of messages with the local
security database.

" The message switch on the remote host determines whether an appropriate
object manager is authorized at a level which dominates the message level. It
does this by an exchange of messages with the remote security database.

" If no manager has an authorized level at which to receive the message and
no appropriate manager can be started, the invocation fails. Otherwise, the
message switch forwards the message to the manager.

2. Abstract Operation Execution

" The object manager requests of the object database an exchange of informa-
tion concerning the object of the invocation. The object database honors this
request or not, depending on the level of the request and the label of the
object.

" The object database exchanges messages with the security database to exam-
ine the label of the object.

" The object database replies to the object manager.

3. Abstract Operation Return of Results

o The manager replies to the invoking user or process via the message switches
and hosts. This reply will be a sequence of send-message events at a level
determined by the manager. The level will of course be within the manager's
label, and it will also bear some relation to the level of the object and the
level of the original invocation.

38 CHAPTER 2. POLICY

From the above example, one can see that each TIP, each message switch, each secu-
rity database, and each object database residing on a host with users at multiple levels
will need to be restrictive. Also, to avoid the need for creating equivalent object man-
agers at multiple levels, one may prefer MLS managers to single-level ones for the sake of
efficiency. Thus, the enforcement of the mandatory policy will be a joint responsibility
of many separate design components.

In the above account, several simplifying assumptions were made about the design.
For example, it was assumed that a object manager is local to the same host as every
object it interacts with. This simplified the account, but is not necessary for the design.
Entities on different hosts may always communicate if the proper intermediate entities
exist and if the communication is an instance of the generic policy.

2.1.3.3 Discretionary Policy

Discretionary policy in SDOS controls a different set of operations from the mandatory
policy. The mandatory policy defines security in terms of send-message events; the
discretionary policy controls the use of abstract operations invoked on objects. As seen
in the previous section, abstract operations can be built from repeated application of
send-message. Since SDOS is based on an object-oriented paradigm, these higher-level
operations are exactly those operations defined for the objects known to the system. As
in any object-oriented system, the possible operations depend on the type of each object.
Because it is always possible to define new types by building new object managers to
implement them, the number and kind of operations to which discretionary policy is
applied is not known in advance and is not fixed.

2.1.3.3.1 Operations on Objects Any SDOS object able to invoke operations on
other objects is called a client. Each client process has a client identity established
when the client is created. The client identity is used to authorize the client's access to
objects. Any user process and object manager can be a client. Authorization to invoke
an abstract operation on a particular object is granted to a client based on the client's
identity, and the authorization is called a discretionary access right for that operation.
The discretionary policy is: an abstract operation invoked on an object by a client will
be performed only if the client has the corresponding discretionary access right.

Although the above policy applies to all invocations of abstract operations on objects,
the assurance that this policy is correctly implemented will vary among abstract opera-
tions. Any user of the system may define new abstract operations, and in general there
will be no assurance that an arbitrary object manager meets the discretionary policy.
Therefore, the types known to the system are divided into two classes: protected types
and unprotected types. The protection attribute of an object type is designated by the
System Certifier (see section 2.1.3.4.4 on Policy Parameters). Assurance of the discre-
tionary policy will be given only for the abstract operations defined for protected types.
The types which are protected may increase over time if there is sufficient assurance

2.1. THE SECURITY POLICY 39

that their object managers meet the discretionary policy.

Operations on protected types are divided into two groups. Direct operations are
abstract operations that can only be invoked by users, each represented to SDOS by a
terminal interface process (TIP). The TIP must be assured to interpret user commands
correctly. As a result, direct operations may only be invoked manually by people. This
policy of manual invocation is useful for controlling the initiation of operations on ob-
jects of protected types that are of critical importance (e.g., some weapons systems).
Operations which do not require manual invocation are called nondirect operations. The
set of direct operations for a protected type is designated by the System Certifier (see
section 2.1.3.4.4 on Policy Parameters).

In general, discretionary security policies do not strictly control information flow.
Suppose A is an object of a protected type. If client C has no discretionary access rights
to A, then C cannot directly gain information from A. However, indirect information
flow is possible through an intermediate client B, which does have discretionary access
rights to A, and which can relay the information back to C. (B could be a Trojan Horse
constructed by C.)

Note also that this discretionary policy does not depend on the semantics of the
abstract operations whose use is being controlled. It is consistent with the policy to
deny a client abstract operation X but permit abstract operation Y for some object,
even though X and Y have identical effects.

2.1.3.3.2 Modifying Access Rights The abstract operation of modifying discre-
tionary access rights is of special importance. The goal of the discretionary policy is
to reflect the intent of user authorizations via the set of discretionary access rights. If
arbitrary (possibly Trojan Horse) processes are permitted to modify discretionary access
rights, all rights could easily be granted to all possible clients. Of course, this would not
reflect every user's intentions. Therefore, propagation of the discretionary access right
that authorizes a client to modify discretionary access rights must be limited.

The right to modify access rights to a protected object is restricted to users (specifi-
cally, terminal interface processes) and managers of protected objects. These entities are
collectively called primary clients. The policy states no rules for the use of operations
on objects of unprotected types.

To prevent frequent conflicts between the intentions of different users over a particu-
lar assignment of discretionary access rights, the right to modify the discretionary access
rights of an object is limited to a designated set of primary clients called the controlling
group of that object. The controlling group for a protected object is designated by the
System Controller (see section 2.1.3.4.4 on Policy Parameters). The controlling group of
a newly created unprotected object is the client responsible for its creation. Membership
of the controlling group of any object can be modified only by the System Controller.

40 CHAPTER 2. POLICY

2.1.3.4 Configuration Policy

There are system-specific rules of the security policy that are neither mandatory (based
on security levels) nor discretionary (based on revocable authorizations that depend on
client identities). These rules form the third part of the instantiated security policy,
called the configuration policy. We adopted this name because many of the rules are
related to the configuration of SDOS at a particular time and for a particular installation.
These rules fall into two categories: network policy and policy parameters.

Network Policy

SDOS is assumed to be supported by a set of hosts, each having local memory but
connected via a communication medium, called the network. Since SDOS will be
a distributed operating system designed to make many of the details of hosts and
the network invisible to users, most of the security policy is independent of these
entities. However, we discuss network security here for two reasons:

1. The physical connections provided by the network may change over time. The
policy is the set of rules describing how these changes may occur in a secure
manner.

2. Some specific properties will be expected of the network that supports SDOS.
These properties will be needed in implementing the high-level policy we have
described so far.

Policy Parameters Certain aspects of how the mandatory and discretionary rules
are applied within a particular system can be controlled by specific individuals,
such as the System Architect and System Manager. The System Architect, for
example, can specify whether the system is tamperproof or experimental. Making
these choices allows the security policy rules to be tailored to fit the intended use
of SDOS at a particular site. The features of the policy that can be controlled are
called the policy parameters of the instantiated security policy. The set of values
that these parameters can take defines a family of security policies that SDOS can
implement.

In order to understand the configuration policy it is necessary to understand how
SDOS is installed and configured. In the next section we introduce terms that relate
to the configuration of SDOS and that allow us to describe more precisely the network
policy and policy parameters. Section 2.1.3.4.2 describes the process of installation of
SDOS. Sections 2.1.3.4.3 and 2.1.3.4.4 describe the network policy and policy parameters
that make up the configuration policy.

2.1.3.4.1 Terms

Communication Path: an interconnection between hosts that allows information flow.
A communication path refers primarily to a physical connection. For example, even

2.1. THE SECURITY POLICY 41

if all data sent over a physical connection is encrypted and cannot be decrypted
at the destination, the two hosts involved are still considered to be linked by a
communication path.

Network Configuration: the current set of communication paths linking hosts.

Network Reconfiguration: a change in the network configuration due to host failures,
communication path failures, or intentional addition or deletion of hosts and com-
munication paths from the network.

Security Preconfiguration: the set of policy parameters selected by the System Architect
before a fielded version of SDOS becomes operational.

Security Configuration: a complete set of current policy parameters for SDOS including
the security preconfiguration; selected by the System Architect, Manager, Auditor,
and Certifier.

Preconfigured System: a set of hosts that can potentially be linked by communication
paths and that are assured to have identical security preconfigurations.

Connected Subsystem: a subset of hosts of a preconfigured system that are currently
linked by communication paths.

Non-system Host: with respect to a particular preconfigured system, a host that has
a different security preconfiguration than the system or a host that will not be
linked to any other host in the system.

Closed System: a system for which all communication paths to non-system hosts are
known to the system and all such paths are selectively controllable by the system.

Open System: a system that is not closed. A system may be open, for instance, if
its network is a LAN connected to arbitrary non-system hosts. This prevents all
communication paths from being known to the system. A system may also be
open, even if all paths are known, if wiretapping of a known communication path
is possible, i.e., paths are not selectively controllable.

2.1.3.4.2 System Installation Each site where SDOS becomes operational will
have individual security requirements. The System Architect is responsible for generat-
ing a version of SDOS appropriate to these local requirements. The System Architect
generates and distributes a customized SDOS system along with any special hardware
and/or firmware. This fielded implementation of SDOS incorporates values of the policy
parameters which are the security preconfiguration of the system. These values are the
choices for some of the policy parameters listed in this section. Once the System Ar-
chitect has selected the security preconfiguration for a system and the system is fielded,
the preconfiguration can only be altered by replacing one system with another. The
fielded implementation is distributed and loaded into SDOS machines in the field. The
system is then installed (booted) and configured by the System Manager, Auditor, and

42 CHAPTER 2. POLICY

Certifier. The process of security configuration involves selecting values for all policy
parameters other than those already chosen in the security preconfiguration.

2.1.3.4.3 Network Policy The first part of the network policy is concerned with
properties of the network. The network is an SDOS entity that transports messages
from one host to another. Properties expected of this network include:

" Data Confidentiality: If a message is delivered, it must be delivered to the correct
receiver.

" Data Origin Authentication: It must be possible for the receiver of a message to
determine the message's sender reliably.

" Data Integrity: Messages must be delivered uncorrupted.

These properties, and methods for their implementation, are discussed in greater detail
in section 3.4.

The second part of the network policy requires that there be a single security con-
figuration for every connected subsystem. Several policy rules are needed to satisfy this
requirement:

" If SDOS is installed on host A, and host A initializes the SDOS on host B, then
A sets the policy parameters on host B that are equivalent to its own policy
parameters.

" If a system is network-reconfigured so that a connected subsystem S is partitioned
into two or more intraconnected subsystems, then each connected subsystem must
have the security configuration of S.

" If a system is operating independently in two separate, connected subsystems, and
those subsystems are then connected into a single connected subsystem, the two
subsystems must reconcile differences in their security configurations. If a given
policy parameter has different values in each separate subsystem, the value that
takes precedence is the value that is more strict. The choice of values that are more
strict is indicated in the next section by stating when one policy parameter value
takes precedence over another. This rule prevents the bypassing of strict security
on one host by connecting it to another on which a less strict policy parameter
value has been chosen.

" Since choices made by the System Architect are not alterable, hosts within the same
system must agree on these parameters. Therefore, within a system, hosts that are
assured to meet the SDOS policy, but with a different security preconfiguration,
are treated as single-level entities with no assurance.

2.1. THE SECURITY POLICY 43

In a closed system, it is possible for each host to assume that data received from the
network is labeled correctly, and that data sent out over any communication path can
be received only by cleared personnel. In such a system, data sent over communication
paths need not be encrypted. For open networks, it is necessary to use a system of
encryption of messages sent over the network to prevent both the unauthorized reception
of legitimate classified data, and the malicious generation of fake data.

The most common example of non-system hosts are hosts that are not assured to
enforce any security policy. Such a host cannot be a member of any system, since nothing
about their security preconfiguration can be assured. Such a non-system host can be
integrated in an SDOS, however, in one of two ways.

1. When the only communication path from the host to the SDOS system is via an
access machine, and the access machine is assured to enforce the SDOS policy with
the system's security configuration (i.e., is a member of the system). The access
machine treats its host as a single, indivisible, single-level entity. In this case the
combination of host-plus-access-machine is considered a single host of the system.

2. When all hosts recognize the non-system host as a single-level entity.

In both of these cases, the interaction of the non-system host with the rest of SDOS
is restricted. Requests to read sent from higher-level hosts to the nonsystem host are
prohibited (except when the read-down enabled policy parameter is set - see the next
section) because the host cannot be assured to enforce an MLS policy. Since the non-
system host is not assured to reliably authenticate its own clients, it cannot be trusted
to reliably participate in the authorization of abstract operations requested by its clients
on remote hosts. A non-system host can be given a limited capacity to use remote SDOS
resources if it interacts with SDOS via an access machine. All clients on the non-system
host can be associated with a single client identifier (reliably supported by the access
machine), and can invoke abstract operations remotely if the host possesses the discre-
tionary access rights for those -.;perations. This is feasible for single-user workstations.

2.1.3.4.4 Policy Parameters Policy parameters are selected, at three different
times, depending on the type of parameter:

1. As part of security preconfiguration, prior to the fielding of the system. These
parameters are chosen exclusively by the System Architect.

2. At security configuration time.

3. During operation, e.g., when new object types are being defined.

The various parameters and rules listed in this section are organized into groups. For
those parameters which are not part of the System Architect's security preconfiguration,
we have indicated which values must take precedence when two network subsystems are
connected together. A concise listing of all the parameters is provided in table 2.1.

44 CHAPTER 2. POLICY

Parameter Groups Policy Parameter Set By Time of Setting

Policy Experimental/ System Preconfiguration
Circumventability Tamperproof Architect

Mandatory Levels modifiable/ Levels System Preconfiguration
Security nonmodifiable Architect

Security Label System Manager Configuration

Software Extensi- Manual assured extensi- System Preconfiguration
bility ble/ Not assured extensi- Architect

ble

Multi-level secure (MLS)/ System Certifier Configuration
single-level secure

Policy Exceptions read-downs System Manager Configuration
enabled/ Read-downs dis-
abled

Manager create-abort en- System Manager Configuration
abled/ Manager create-
abort disabled

Object Types Protected/ Unprotected System Certifier During operation

Controlling group mem- System During operation
bership Controller

Direct use/ Nondirect use System During operation
Controller

Auditing Auditing on/ Auditing System Preconfiguration
setable/ Auditing off Architect

Auditing disabled/ Audit- System Manager Configuration
ing enabled

Directories Directories restricted/ Di- System Manager Configuration
rectories unrestricted

Table 2.1: Policy Parameters

2.1. THE SECURITY POLICY 45

Policy Circumvent ability

In order to effectively develop and test a secure system it is necessary to circumvent
the security policy intended to be implemented by that system. The following policy
parameter determines whether the SDOS security is circumventable:

Experimental/Tamperproof: set by System Architect at system preconfiguration
time. If tamperproof mode is set, then the implementation for an entity assured
to enforce some property of the mandatory, discretionary, or configuration policy
cannot be modified. The only exception to this rule is that the System Certifier
may modify or add assured object managers to the system. In experimental mode
these restrictions do not hold, and the implementation of assured entities may be
changed. Experimental mode is intended for systems under development, while
tamperproof mode is for fielded systems that need assured security.

Mandatory Security

Part of the security preconfiguration of a system is a choice of interpretations for the
security levels used in mandatory security. For example, if SDOS supports N security
categories, then the use of these categories must be determined and enforced system-
wide. This interpretation is not under the control of SDOS, and so is not really a security
property enforceable by the computer system. However, when two SDOS sub-groups of
the same preconfiguration are joined, the representation of security levels (for example,
the meaning of the security categories described above) in the two sub-groups must be
the same. The original interpretation of the levels for a fielded system is made by the
System Architect.

The following policy parameters pertain to the flexibility of the system of levels used
in mandatory security:

" Levels modifiable/Levels nonmodifiable: set by System Architect at system pre-
configuration time. If the levels nonmodifiable parameter is chosen, levels for
newly created entities must be selected, but levels for existing entities may not be
changed. If the levels modifiable parameter is chosen, the System Manager may
explicitly change the labels of entities. Levels nonmodifiable is more strict, and
therefore takes precedence.

" Entity labels: set by the System Manager. These parameters are the labels for
every entity in the system. Entity labels are stored in the security database. If the
label of an entity is replicated, the more recent value of the label is more strict,
and takes precedence.

Assured Software Extensibility

The following policy parameters pertain to the extensibility of the assured system
software.

46 CHAPTER 2. POLICY

" Manual assured extensible/Not assured extensible: set by System Architect at sys-
tem preconfiguration time. If the not assured extensible parameter is chosen, the
set of entities containing the executable code for assured object managers cannot
be changed. These managers are ones assured to meet the mandatory policy for
MLS entities and/or the discretionary policy. The MLS assurance attributes in
the security database will be unmodifiable, and the set of protected types cannot
be expanded. On the other hand, if the manual assured extensible parameter is
chosen, the set of assured object managers may be extended by the System Certi-
fier. New entities containing the assured executable code of the managers can be
created.

" Multi-level secure (MLS)/single-level secure: set by the System Certifier. This
attribute of entities may be modified, but only by the System Certifier. Some
entities will be marked as MLS in the initial system configuration. If information
about the MLS/single-level secure attribute of an entity is replicated, the more
recent value of the attribute takes precedence.

The following policy rules pertain to the extensibility of the assured system software.

e MLS process entities, including MLS object managers, may only be created from
executable code marked as MLS.

e Any MLS object manager will also be assured to meet the discretionary policy.
The converse need not be true.

Exceptions to Mandatory Policy

The following policy parameters define limited exceptions to the mandatory security
policy:

" Read-downs enabled/Read-downs disabled: set by System Manager at system con-
figuration time. When disabled, every send-message event that requests to read
information from an entity at a lower level must be secure as defined in the manda-
tory policy. When enabled, users may override the strict message passing policy
to downgrade a request to read. Each such request must be explicitly approved by
the user. This requirement for user approval limits the rate at which information
could possibly be compromised. Enabling this parameter makes single-level hosts
with no assurance more useable: a user on one host may approve read-down re-
quests to be sent to entities on a single level host. The disabled parameter is more
strict, and takes precedence.

* Manager create-abort enabled/Manager create-abort disabled: set by System Man-
ager at system configuration time. When disabled, users may only create and
abort processes at levels which dominate their own. When enabled, users may
override the strict message passing policy to create/abort object managers at a
lower security level. Explicit approval by the user of each create/abort is required

2.1. THE SECURITY POLICY 47

in order to limit the rate at which information could possibly be compromised.
The disabled parameter is more strict, and takes precedence.

Object Types

The following policy parameters pertain to the definition of new object types:

* Protected/unprotected: set by the System Certifier at the time a new object type
is created, or during ordinary operation. When unprotected, object managers for
the type are not assured to enforce the discretionary access control correctly. The
unprotected parameter is more strict, and takes precedence.

" Controlling group membership: set by System Controller (or automatically on his
behalf) at the time a new object is created, or during ordinary operation. This
list determines the clients that may change the discretionary access rights of the
object. The intersection of controlling groups is more strict, and takes precedence.

" Direct use/Nondirect use: set by System Controller at the time a new object type
is created, or during ordinary operation. This parameter controls the direct use
attribute of each operation defined by an object type. Direct use requires that the
operation only be invoked by a user's terminal interface process (TIP). The direct
use value is more strict, and takes precedence.

Auditing

The SDOS system is able to perform auditing. The following policy parameters
pertain to auditing:

" Auditing off/Auditing settable/Auditing on: set by the System Architect at system
preconfiguration time. If auditing on or auditing off are chosen, no other user may
alter the choice. If auditing settable is chosen, the System Manager is able to
select between the following two parameters.

" Auditing disabled/Auditing enabled: set by System Manager at system configura-
tion time. No other user may alter this parameter. Auditing settable, chosen in
combination with auditing enabled, turns on auditing in SDOS, and is equivalent
to a preconfiguration of auditing on. Auditing settable, chosen in combination
with auditing disabled, turns off auditing in SDOS, and is equivalent to a precon-
figuration of auditing off. Auditing enabled is more strict, and takes precedence
over, auditing disabled.

The following policy rules pertain to auditing:

" The audit record is visible only to the System Auditor.

" The audit record may only be modified by an authorized audit database manager.

48 CHAPTER 2. POLICY

Directories

Directories contain user-level symbolic names for abstract objects. The following
policy parameters pertain to directories:

e Directories restricted/Directories unrestricted: set by System Manager at system
configuration time. If the restricted parameter is set, each directory is restricted to
containing names of objects whose level is exactly the directory's own level. This
rule need not hold if the unrestricted parameter is set. The unrestricted parameter
is more strict, and takes precedence.

2.2 Assigning Values to the Security Policy Parameters

The security provided by SDOS may be tailored to the needs of a particular site through
the choice of values for the security policy parameters. A particular choice of values is
called the security configuration. A set of these parameters has already been defined in
the SDOS Security Policy. (See section 2.1 for details). It includes the security label
associated with each SDOS entity, parameters which may modify the mandatory policy
based on those labels, as well as other parameters which constrain the role of some of
the system security administrators. Some constraints on the values of these parameters
were stated as rules of the Configuration Policy. In this chapter, we will consider in
greater detail how their values might be assigned in practice.

Sections 2.2.1 and 2.2.3 consider general questions about choosing a security con-
figuration. Section 2.2.2 deals with the special important case of the choice of security
labels for SDOS entities.

2.2.1 Life-Cycle Phases

Some aspects of the security policy, such as the decisions made by the System Architect
and the choices for policy parameters made by system officers, depend on the phase of
the SDOS software life-cycle. We will now take an overview of that life-cycle to see how
policy parameters get set at each phase, and to list certain procedural rules that must
be observed for SDOS security.

In some cases, the procedural security rules are addressed by DoD regulations or
regulations of the individual services. It is not our aim to reproduce those rules, but
rather to point out what kinds of security ,rules must exist.

2.2.1.1 Development

All security in SDOS environments will obviously depend on the correct implementation
of security-relevant parts of the message-switch and of assured managers. This imple-
mentation should therefore be carried out in an environment in which only authorized

2.2. ASSIGNING VALUES TO THE SECURITY POLICY PARAMETERS 49

personnel can code or make changes to the system. This restriction may be enforced
both by software and procedural controls, but ultimately there must be some physical
controls, e.g., secured areas, that prevent unauthorized access to the code under devel-
opment. Procedural rules must govern not only who may modify the software of assured
parts of the system, but also how modifications are distributed to SDOS sites.

An SDOS system itself may act as the site for development of new assured managers.
This development may be speeded by setting the "policy circumventability" parameter
to "experimental". Assured managers developed in such an experimental environment
should not theR be exported to other SDOS sites running in "tamperproof" mode,
unless the development site is restricted to personnel authorized to modify the assured
managers.

2.2.1.2 Installation

The System Architect makes choices for certain of the policy parameters, as indicated
in Table 2.1. This "security preconfiguration" is unalterable without repeating the
installation procedure.

Particular users must be chosen for .the administrative roles of Manager, Auditor,
Certifier, and Controller. For fielded systems with many users, these will probably be
different people. For smaller systems, some roles may be filled by the same user. For
example, the Certifier and Controller may be the same person. Combining roles in
this way spreads authority among fewer users and therefore increases the amount of
damage to security that a single person can cause. Because the Auditor acts as a check
on suspicious activity by every other user, designating the same user to fill both the
Auditor and other roles should be prohibited.

The system administrators are then responsible for setting the remaining parameters
of the security configuration to appropriate values. Some set of these values may already
exist on stable storage from a previous installation of the system.

2.2.1.2.1 Installation of Multi-level Devices Some of the peripheral devices con-
nected to SDOS will be used at more than one security level. This poses the risk that
such a device contains Trojan Horse hardware or software, and could store information
at one level to be released at another level. A user's display terminal is one example. If
the terminal can be used for login at multiple levels, there is a possibility that the termi-
nal can store information from a higher level session, and encode it later into operations
at a lower level without the knowledge of either of its users.

Before connection to the system, each such hardware device must be certified (prob-
ably by the System Certifier) either to be an MLS entity satisfying a multi-level security
policy, or to be purgeable on command from SDOS. In the latter case, SDOS must purge
any such device before changing its security level of operation.

50 CHAPTER 2. POLICY

2.2.1.3 Normal Operation

During normal operation, policy parameters may be changed. Changes are intended
to be effective for the entire system; however, this will be impossible if some hosts are
disabled, or if parts of the network are running separately without communication. The
security policy rules govern automatic changes to policy parameters that must take
place when hosts with different security configurations are joined by a communication
path. These rules either choose the more "conservative", or strict, value of a parameter
when a choice must be made, or choose the later one if information on relative timing
is available.

Perhaps the most common change to the security configuration will be changes to
discretionary access rights. These changes reflect authorizations for new data, or changes
to rights which reflect changes in users' responsibilities.

The security labels will be much more static. Their assignment is discussed further
in the section on labels.

2.2.1.4 Modification

It will be possible to modify the system with new software to meet new conditions.
There are basically two ways this may happen.

1. The old version of the system will be halted, and an entirely new one installed.
This will follow the procedure outlined in the section "Installation".

2. New software may be added in the form of type managers. If the software is to
operate at a single level, the extension will have no impact on multi-level security.
However, installing a new MLS manager will require that the "manual assured
extensible" parameter be enabled. There must also be a system user (the System
Certifier) who will guarantee that the new software is indeed MLS. He does this
either by confirming that the software is delivered from a source authorized to
verify that it is MLS, or by verifying it himself. In the latter case, the System
Certifier must have verification tools and security methodologies at least equal to
those used in the original certification of the SDOS kernel, and he must be trained
in their use.

2.2.1.5 De-installation

The system de-installation involves clearing stable storage of sensitive information. This
procedure carries the risk that highly reliable data may be lost. Procedural controls may
be used to prevent this.

2.2. ASSIGNING VALUES TO THE SECURITY POLICY PARAMETERS 51

2.2.2 Assigning Security Labels

Assigning an appropriate value to the security label of each entity is one of the more
complicated aspects of the security configuration process. This is especially so since the
SDOS labels may carry a great deal of internal structure. Each label, in full generality,
may consist of a set of levels at which the entity is authorized to send messages. Each
level, in turn, has the standard Bell-LaPadula-Biba structure of security and integrity
classifications and category sets. We will consider these various components separately.

2.2.2.1 Security Levels

The prototypical part of the security level is the security classification. This classification
is assigned both to users and to stable data objects by various government agencies.
The classification of a data object represents an upper bound on its sensitivity, while
the classification of a user represents his clearance for sensitive information.

Security categories are assigned to users and data objects in a similar fashion, al-
though they are often used to represent distinctions among different kinds of information,
and to represent a user's "need-to-know" for each kind.

2.2.2.1.1 Creating Security Categories Some security categories may be created
specifically for use at a particular SDOS site. For example, an SDOS fielded at BBN
may have a security category "BBN proprietary", which is used to mark local propri-
etary information and users who are authorized to see such information. Any categories
defined in this way must be identified by the System Architect at the time of security
preconfiguration; the meanings of the various categories cannot be dynamically changed.

On what basis are data objects assigned these new security categories? One straight-
forward answer is: an object must be assigned a category if it contains information
"about" the subject of that category. If is does not contain such information it may still
be assigned the category; this means that it may contain information of that category
sometime in the future. In the example above, a file will be "BBN proprietary" if it
contains (or may in the future contain) BBN proprietary information. Typically, the
subject-matter of a data object is determined through inspection by the System Man-
ager. It will usually be based on syntactic evidence, i.e., the appearance of keywords
such as "BBN patent #", etc., will probably lead to assignment of a data object to the
"BBN proprietary" category. The inspection will most likely be based on some stan-
dard interpretation of the data, rather than non-standard ones (such as encoding BBN
proprietary information into the placement of punctuation marks).

Instead of relying on the syntactic form of an object's data, why not assign categories
based on an object's semantic content (under some standard interpretation) instead?
Following this approach may lead to difficulty. Suppose there is a mapping, catset,
which maps from content to category sets, and suppose this mapping consistently obeys
the following intuitive rules:

52 CHAPTER 2. POLICY

1. Two data objects with logically equivalent contents are assigned the same cate-
gories.

A = B - catset(A) = catset(B)

2. The data object containing both A and B has a category set which contains both
A's category set and B's category set.

catset(A and B) 2 catset(A)
catset(A and B) Q catset(B)

3. A and not-A have the same category set (since they each answer questions "about"
the same subject).

catset(A) = catset(notA)

We can show as a consequence of these three rules that no nontrivial assignment of
categories is possible. Using rule 2, note that catset(A and false) contains catset(A),
for any contents A. Using rule 1, catset(false) must then contain catset(A). Also
note that catset(A and true) contains catset(A), so catset(A) contains catset(true), for
any contents A. But rule 3 shows that catset(false) = catset(true), so catset(A) =
catset(true), for any A. It follows that some, single, category set must be assigned to
every object. This approach is therefore not useful.

In practice, syntactic evidence is used to determine subject-matter, and this violates
rule 1 above. For example, a file stating "A implies A" may be given category "A",
(since it is syntactically "about" subject A), even though it is logically equivalent to a
file contaiiiing "true", which need not be assigned any categories.

2.2.2.2 Integrity Levels

In what follows, we will begin by considering only complete integrity levels, undifferen-
tiated into classifications and categories.

Data integrity has two goals:

1. Trustworthiness of data

2. Protection of data

These two goals are related, but are not the same. It is possible to have no restrictions
on the modification of data, and yet maintain trustworthiness of data by recording the
history of the modifications which were made. Data would then be trustworthy if the
history showed that they had only been created and modified in appropriate ways.

Similiarly, there could be two goals in assigning integrity levels to users:

I. To indicate that the user has a certain competence for dealing with a specific type
of data;

2.2. ASSIGNING VALUES TO THE SECURITY POLICY PARAMETERS 53

2. To indicate that the user is trusted to make decisions about the modification of
data.

As an example of the first goal, consider a system in which there is a data type "C-
program". Some object of this type may be an important program for the system and
could be protected by being assigned an integrity level indicating that it should only be
modified by "C" programmers. Thus a user would need a "C-program" integrity level
in order to modify such a protected C program.

As an example of the second goal, there may be a data object called "System Policy"
which indicates what actions are allowed on the system There would then be only a
few users on the system, perhaps only the "System Manager", who would be trusted to
set system policy, and so this could be enforced by making an integrity level for system
policy and having only the system manager possess that level.

2.2.2.2.1 Integrity Levels for Data Objects An integrity level could be used for
each type of data object in which either

1. Special skill or knowledge is needed for the correct modification of the data object.

2. Modification of the data object has important consequences for the functioning of
the system, so that only users with authority can be allowed to modify the object.

2.2.2.2.2 Integrity Levels for Users Before a user is assigned an integrity level,
the assigning authority must consider

1. Is the user trained or knowledgeable in the type of data protected at this integrity
level?

2. Is the user trusted with the modification of data at this integrity level?

3. Is the user trained in the use of all programs which are allowed to modify data at
this integrity level?

2.2.2.2.3 Integrity Levels for Programs A program must serve in two roles, first
as a data object written into by a programmer, and secondly as instructions read into
some newly initiated process entity. The program's integrity level should therefore be
appropriate to both roles. As a data object, the program is assigned a level according to
the guidelines listed above. As instructions for a process, the program may be read into
a process at any lower integrity level, and must be verified (or other assurance must be
given) that it will correctly handle data at any of these levels.

It is possible that no assignment of integrity level will satisfy both requirements.
For example, suppose a program P has been given a "C-protgram" integrity level. This

54 CHAPTER 2. POLICY

ensures that only "C" programmers may modify P. It is now possible to start a process
at the "C-program" integrity level which loads program P and operates on data at the
"C-program" level (possibly even on P itself). This may not be appropriate if P is not
assured to operate on data at that level.

In spite of this problem, integrity levels can still be usefully assigned to programs if
it is recognized that the Bell-LaPadula-Biba scheme cannot be used to prevent the loss
of "integrity" in all possible cases. Situations such as the one described in the previous
paragraph, in which the integrity level cannot be made to serve double-duty, can be
handled in either of two ways:

1. Program P may be assigned a level not including integrity category "C-program",
and instead discretionary access controls will be relied on to limit the set of users
who may modify P.

2. Program P may be assigned integrity category "C-program", but it will be assumed
that P will typically be used for reading and writing data not marked as "C-
program". Then P will typically not be invoked at level "C-program", and hence
cannot be used to modify C programs improperly.

2.2.2.2.4 Creating Integrity Levels Because of the constraints in the Bell-Lapadula-
Biba model of security and integrity levels, the integrity levels will form a lattice. How-
ever it may be preferable not to use all levels which are theoretically possible. If the
different integrity restrictions, "C-program", "System Policy", etc., are each associated
with a single integrity category bit, then it may be preferable that not all integrity cat-
egory bits be independently settable. For example, there may be a bit indicating that
a data object is a program of some kind, and a second bit indicating that it is in fact a
"C" program. It is impossible for an object to be a "C" program without being a pro-
gram, so it will never be the case that an object has the category "C-program" without
also having the category "program". In this situation we may say that one category
represents a subtype of another category.

Thus, there needs to be a partial ordering of the integrity category bits (not to be
confused with the partial ordering on levels themselves) indicating that one integrity
category is a subtype of a second integrity category. If a data object is given an integrity
category corresponding to a data type, then it should also be given the categories cor-
responding to all of its supertypes.

The hierarchical integrity classifications are then a special case of the integrity cat-
egories. The highest integrity classification is a subtype of the next highest, and so on,
with the lowest integrity classification being a supertype of all the others.

The hierarchical integrity classifications should, in the case of users, mean the degree
of trust in the judgement and the reliability of the user. In the case of programs, the
integrity classifications should indicate the reliability of each program, and no program
should be given the highest integrity classification unless it has been verified to work

2.2. ASSIGNING VALUES TO THE SECURITY POLICY PARAMETERS 55

correctly (with the meaning of "working correctly" being dependent on the type of the
program, as indicated by the program's integrity categories.) In the case of data objects,
the integrity classification should indicate the degree of protection the data should have,
which should be determined by considering the harm that would result if the integrity
of the data were to be compromised.

2.2.2.3 Level Sets for MLS Entities

Each MLS entity is authorized to operate within a given set of security levels. The
fact that an entity is MLS means that there is some reason, or special security policy
for that entity, which guarantees that it will handle information of many levels in a
trusted manner. Given this reason, the simplest way to assign a set of security levels to
each MLS entity is to authorize every level. If software assurance were purely a yes/no
decision, this would be a natural approach.

However, assurance is not purely binary, and some entities will not be authorized
for all levels. In particular, the level sets of SDOS users are restricted. Typically,
each user may operate over a range of security classifications, from UNCLASSIFIED
to a maximum classification. He is also authorized to log-in with various need-to-know
categories. His integrity level will also typically be chosen either from a range of integrity
levels, from the lowest on the system to a maximum integrity, or as a function of his
security level.

It may also be desirable to restrict the level sets of various software entities. Even
though each such entity must have passed some rigorous form of certification to have
been labeled as MLS, the certification should not be given complete trust.

MLS hosts may be labeled with different level sets. There are two separate reasons
for this:

1. The degree of assurance of the MLS host software may be linked to the maximum
level of sensitivity of data kept on the host. An example of this sort of linkage can
be found in the NCSC document [DoD Guidance 85], which requires, for example,
a B3 level of assurance if SECRET data is to be kept on a system used by uncleared
users. Although MLS entities in SDOS should all meet the Al level of assurance,
which requires use of formal methods, it may be that some formal methods engen-
der more confidence than others. Hosts which run managers which have a greater
degree of assurance may perhaps contain more highly classified data.

2. System administrators may wish to keep data of different levels physically separate.
For example, an MLS SDOS host may be certified to handle all levels of data, but
if its level set has SECRET as the highest level, then it can be removed from
the system with assurance that its stable storage contains no TOP SECRET data.
(There may be exceptions to this, such as user-authorized requests to read-down, or
other downgrading; a principal goal of certification is to identify these exceptions).

56 CHAPTER 2. POLICY

Objects within a host, such as MLS processes, may also be have limited level sets.
The first of the reasons given above for hosts applies here as well. Of course, it won't
make sense if an MLS process is authorized for levels which are denied to the host it's
running on.

Storing an arbitrary set of levels in every label is absurdly expensive. With 2**32
levels, for example, (a reasonable lower bound adequate for 4 classifications and 30
categories), recording an arbitrary set of levels requires up to 2**(2**32)) bits. Therefore
no SDOS design will use this full generality. One simple and useful restriction would
be to require each level set to be a range of levels. A range is specified by giving two
levels, and the corresponding level set is then the lattice of levels greater than one and
less than the other. This reduces the storage requirement to 64 bits per label.

2.2.3 Strict vs. Flexible Assignments

For the most part, each policy parameter of the configuration policy may be varied
independently of the others. For example, "levels non-modifiable" may be set according
to the needs of the site, regardless of the value of "auditing enabled/disabled". However,
it will probably happen that certain configurations will occur more often than others.
We distinguish three common site configurations, though others are possible:

1. The site may be used for research and development, either of SDOS itself or of
application software. In this case, policy circumventability will be set to "experi-
mental", and "manual assured extensible" will be enabled.

2. The site may be used primarily for document preparation and controlled dissemi-
nation. In this case, policy circumventability will be set to "tamperproof". "Levels
modifiable" will most likely be enabled. "Read-downs" will be enabled, in order to
allow the maximum secure access to information throughout the network, however,
"manager create/abort" will probably be disabled, since the typical user will have
little need to initiate new managers rapidly, or at levels which he cannot access.
Auditing will be fully enabled.

3. The site may exist primarily to support embedded applications. In this case, the
system will be largely autonomous, and in normal operation will require little in-
teraction with system officers such as the System Manager. (Many of these officers
may in fact be designated to be the same person). The policy parameters will be
set to reflect this fact. Policy circumventability will again be set to "tamperproof".
Since the system will probably be used for a static collection of tasks, operating
on a fairly well-defined set of data, "levels modifiable" may be disabled. "Assured
extensibility" will be disabled. "Manager create/abort" will be enabled, in order
that any designated individual will have maximum flexibility to initiate the system
functions. Most types will be protected, and many operations will be designated
"direct use". Auditing may be "settable", so that the System Manager will have
the option to disable it if its processing costs interfere with real-time processing.

2.3. THE FORMAL MODEL 57

2.3 The Formal Model

A primary goal of the SDOS effort is verification that the design for SDOS satisfies
its security policy. It is not possible to demonstrate this correspondence directly and
formally because the security policy is stated only in informal terms. To make such
a demonstration possible, we must first formalize both the rules stated in the security
policy, and the algorithms of the design. The model presented in this chapter is the
formal statement of the security policy. By formalizing, we clarify and make precise the
constraints of that policy.

In this chapter the design, whether expressed formally or informally, will sometimes
be referred to as the implementation of the security policy and formal model.

2.3.1 Approach

Wherever possible, the model expresses policy constraints as extrinsic properties rather
than intrinsic ones. An extrinsic property constrains the external behavior of the sys-
tem; an intrinsic one puts relations on internal states, possibly for different system
components or at different times. The emphasis on extrinsic properties aligns with
the object-oriented philosophy on which the system is based: objects are defined on
the basis of their behavior rather than their implementation. This distinction between
internal state and external behavior makes it possible to change an object's implemen-
tation (for example, its internal representation) without changing its definition. Stating
properties extrinsically retains the maximum freedom for the design. Flexibility in the
design phase is important because of the need for the design to balance the system's
performance against a set of system constraints, of which security is one.

Constraining behavior naturally requires first describing that behavior. To describe
behavior, we concentrate on the history of a system's interaction with its environment.
A history of interaction is composed of events, which are actions the system may take.
The model will describe acceptable (secure) relations among events in a given system
history, and (secure) relations among different possible system histories. The meaning
of the events will not be defined in the model; if the policy that the model describes is
to be a meaningful one, then most or all of its events should have an intuitive meaning
for outside observers. For example, the event login user U on terminal T should ideally
have meaning in terms of particular keystrokes and display at terminal T. Perhaps
this meaning would be: type the name and password for user U and receive a login
acknowledgement. If there is also an event logout user U on terminal T, then a simple
example of a policy on an actual history of events of this system might be: two login
events are always separated in time by a logout event.

This general approach to specification is often called the trace approach, where a
trace is defined as a totally ordered sequence of events. This approach is developed
in great detail in [Brookes et al. 841. The trace approach is especially attractive for
distributed systems, since the notion of an abstract global state of such a system may

58 CHAPTER 2. POLICY

be hard to define. It is also attractive because a policy constraining histories of external
events for the entire system may be decomposed into policies on the histories of nodes
processing in parallel. The behavior of one node naturally involves the communication
events between that node and its neighbors. A policy for that node would be a constraint
on histories of events of two kinds: communication events with neighbors, plus any of
the system's external events that are produced by the node.

We have made some slight modifications of the trace approach. The events in a
history will be only partially ordered, rather than totally. In the next section we describe
the form used to express the constraints on events and event histories.

2.3.2 The Language of the Formal Model

The framework of the model is a list of definitions of the various logical components
mentioned in the security policy, along with statements which show relationships among
these components. Generally, the abstract entities out of which SDOS is built are encap-
sulated as types. Elements of the various types have attributes that are represented by
functions. The policy rules are then formalized as first-order logic sentences, presented
under the heading policy, which show how the functions are related.

Some types and functions are defined in terms of other types and functions appearing
in the model, and some are left unspecified. During the process of verification, the
unspecified types and functions will be given meaning by being put in correspondence
with concrete features of the design.

2.3.2.1 Types

Types are defined first in the model and are presented in section 2.3.5.1. They are
organized in a top-down fashion, with the most encompassing types listed first. The
types of the model include all of the system components mentioned in the security
policy (e.g. hosts, users, entities), plus the type event.

The entities explicitly identified in the instantiated message-passing policy are listed
here as subtypes of the type entity. A subtype, object, refers to all abstract objects of the
object model. A subtype of type object, code-object, refers to certain passive containers
of data which hold the code executed by SDOS processes. These objects are singled out
so that policies controlling the modifiability of assured processes can be stated.

The type label is constructed to be a set of levels. These in turn are constructed from
the unspecified types of security and integrity classifications and categories.

As in the security policy, the type event has been defined to be equivalent to the
type of send.message operations. Every event is the sending of a message, and vice-
versa. Complex system activities are constructed from sets of send-message events. In
particular, the abstract operation invocations of the object model involve a collection
of related send-message events. In order that an abstract operation invocation be re-

2.3. THE FORMAL MODEL 59

lated in time to other events, each abstractoperation-event is identified with the final
send-message event which relays successful completion back to the requesting client. If
the abstract operation invocation does not complete successfully, then there is no ab-
stract-operation-event, although there will be other send-message events resulting from
the invocation.

The type command is a subtype of the abstract operation events. These commands
include all changes to the system's security configuration.

2.3.2.2 Functions

Functions are defined next in the section 2.3.5.2. Unlike types, the functions are orga-
nized in a bottom-up fashion, with unspecified functions listed first. Functions defined
in terms of other functions then always refer to previously defined functions.

Every event type has parameters that are unique to that type and which distinguish
between different events of that type. For example, different login events can be distin-
guished if they log in different users. Section 2.3.5.2.1 gives a list of unspecified functions
which return these parameters.

Section 2.3.5.2.2 consists mostly of functions which distinguish events according to
their order in time. SDOS histories will in general be unordered sets of events. How-
ever, an important i. rt of most constraints on event histories is event sequencing. A
distributed system consists of a set of computers executing in parallel, and it may not
be desirable to assume that there exists an absolute, global time which gives an order
to every pair of events. In the model we begin by assuming that there are concurrently
executing nodes, some or all of which are the SDOS hosts. For each node there is a
total ordering of events. The function sequenced indicates the order of two events that
occur on a particular host. From these orderings for each node, plus the existence of
send-message events which pass between nodes, we define a single partial order for all
events, causal. Causal is used repeatedly in the model to decide which information about
the values of security policy parameters can be known at a particular event.

The configuration of SDOS may change with time. Functions are defined which
return the system's configuration as it can be known at each event X. These functions
are always defined in terms of previous events that can be causally connected to the event
X. The rules of the policy are then enforced at each event in a manner appropriate to
the configuration known at that event.

The partial order defined by causal is extended into a total order in the function
before. Events which are not ordered by causal are assumed to be ordered by some
mechanism in SDOS, perhaps by physical clocks on each node. This ordering before
serves only one purpose in the model: when disconnected subnetworks are reconnected,
they must make their security configurations consistent. In some cases, discussed in
the security policy, the choice between different configurations is made based on which
configuration was established later.

60 CHAPTER 2. POLICY

This method of ordering events using actual send.messages between nodes, was in-
spired by [Lamport 78]. Note that each send-message event represents actual, success-
ful communication. If a communication path between nodes is not working, then no
sendmessage between them may occur, even though the nodes may attempt to commu-
nicate.

The functions in section 2.3.5.2.3 define a partial order of levels in the standard
fashion.

The functions in section 2.3.5.2.4 define the system's security configuration at any
event in a history. They include definitions of all policy parameters found in the security
policy. For example, the value of an entity's security label which should be used in
mandatory access control at event A is defined in terms of the latest event which should
have changed the level at A and which could have causally affected event A.

The final section presents several special-purpose functions. Included are constant
functions representing the special SDOS users. Also included is an unspecified function
security-relevant, which identifies some SDOS commands as more important than others
for enforcement of the policy. Every instance of any command type mentioned in this
model is security relevant, while other abstract operation invocations need not be.

2.3.2.3 Policy

The principal rules of the policy are stated in the sentences marked as policy. These
are divided into sections of configuration, discretionary, and mandatory rules, which
correspond directly to the three parts of the security policy.

Implicit in each policy statement is a universal quantification over sets of events
which can be produced by the system. Each statement can be thought of as prefaced
by: "for all histories h, if h is produced by the system, then .. '. Each statement then
asserts a particular property about h. Unless indicated otherwise, events referred to in
a policy statement are elements of this implicit history h.

Most policy statements are also universal quantifications over the set of events in
the history. This corresponds to an invariant for the execution of the system. When
other events are mentioned in a policy statement, these other events are usually related
to the event in the outermost quantification by the causal relation. This is equivalent
to saying that the event now under consideration bears some relation to events in the
past. If the policy rules did not take this form, they could be stating liveness properties
of the system, i.e., that given condition A, the system will produce event B eventually.
As in the security policy, we have avoided such liveness assertions.

The only case not covered by the previous paragraph is the policy statement for MLS
entities. This policy statement includes an explicit quantifier over histories, but also a
relation between two separate but possible system histories.

There are other, ancillary rules of the policy stated as restrict statements. These

2.3. THE FORMAL MODEL 61

restrictions apply both to types and to functions. For types, they usually restrict one
type to be a subset of another. For functions, they usually place some constraint on a
single function, rather than on a combination of several. In both cases of types and of
functions, the restrictions were needed because we either could not or did not choose
to define a type or function in terms of more primitive ones. For example, the type
command is restricted to be a subset of abstract-operationevent. Certainly in the SDOS
implementation, the type abstract-operationevent will be some union of various events,
including those of type command. We chose not to define it as such a union here,
however, because the abstract -operation-events that are not commands (as defined in
the model) cannot be known in advance: they are defined during system operation by
adding new type managers. These unspecified events are not mentioned elsewhere in
the model, except as elements of the type abstract-operation.event.

As another example, the function label is not given directly as a definition. Instead, it
is restricted by a rather lengthy relation among those previous events that could possibly
have affected the label in question. Without further information, such a restriction may
lead to more than one interpretation of the function label in the SDOS implementation.
If so, the model considers them equally acceptable. (If such a restriction, or any policy
rule, leads to no possible interpretations, then there can be no implementation which
satisfies -the policy.)

2.3.3 Implementation and Verification

The goal of the verification of the system is to show compliance of the system design
with the policy as expressed in the formal model. The model defines acceptable histories
of events. The events of these histories should have some intuitive meaning to users of
the system, since it is their relation that defines the acceptable, secure behavior of
the system. Therefore, the first step in the verification process is relating unspecified
elements of the model to concrete features of the design.

Verification may be accomplished through the steps outlined below.

1. Give a concrete interpretation in the design to all unspecified types, including all
unspecified event types.

2. Show that all relations between types, (e.g. c), hold in this interpretation.

3. Give a concrete interpretation in the design to all unspecified functions.

4. Demonstrate that all restrictions on functions hold in this interpretation.

5. Demonstrate that all policy statements hold in this interpretation.

Making this correspondence properly, i.e., giving unspecified elements of the model
an intuitive interpretation in the design, is a crucial part of the verification process. If
this correspondence were made arbitrarily (for example, if the interpretation of login

62 CHAPTER 2. POLICY

events were exchanged for the interpretation of logout events) the policy rules (for login
and logout) would have little meaning for the system's users. The correspondence must
also be complete. If the interpretation of login events in the design covered only some
of the cases for which users thought they correctly followed a login sequence, then again
the policy rules would have little significance for the real system. Types and functions
which are not unspecified are defined in terms of other types and functions. Usually
these elements of the model are meant to correspond to features of the design which have
intuitive meaning. This is not necessary, though. The entire formal model could be re-
written by replacing each occurrence of a defined type or function with its definition. In
this expanded form, verification may begin after just the correspondence with unspecified
elements is given.

In the formal model, we have not biased the choice of language(s) in which the design
is to be expressed. However, we expect that a formal description of the design will be
given in Gypsy. In that case, "concrete features of the design" will mean particular
Gypsy constructs. For example, a correspondence will be given between types of the
formal model and Gypsy types. The entities of the model may correspond to Gypsy
procedures, and events to Gypsy buffer communication, etc.

2.3.4 Notation

Before any mechanical specification and verification system can be used to prove that
some design correctly implements this model, both the design and the model must
be expressed in the language of that system. Each specification and verification system
language has its own idiosyncrasies and limitations which prevent one from saying clearly
and directly what needs to be said. Therefore, we have avoided expressing the model in
the language of any particular system. Even though we expect the model will need to
be restated in Gypsy notation, using that notation now would cause us to make rather
arbitrary, possibly inappropriate, decisions about the Gypsy constructs to be used, and
in particular, about those constructs used to model events and histories.

The notation we have used is not complicated, and this fact should allow it to be
translated easily into most verification system languages. The following is a description
of the notation used in the model:

Type Construction Operators
A new type is constructed from existing types using one of three set construction
operators.

- Union
type1 U type2 is the type of all instances either of typel or of type2.

- Direct product
typel x type2 describes a new type whose instances are ordered pairs of
instances of the component types. If t is of typel and I is of type2, then (s, 3)
is the instance of typel x type2 with these components. If : is of typel x

2.3. THE FORMAL MODEL 63

type2, then t.typel describes an instance of typel that is the first component
of s. (In cases for which typel and type2 are the same type, they will be given
distinguishing names.)

- Powerset
powerset(type) describes a new type whose instances are sets with elements
of type type.

In
t e type holds if z is an instance of type type. : E set holds if t is an element of set
set.

" Subset
typel C type2 holds if every instance of typel is an instance of type2. seti C set2
holds if every element of seti is an element of set2.

" Quantification
V ::type means universal quantification over type type. 3 t:type means existential
quantification over type type.

" Propositional connectives
and, or, xor, not, -*, and +-* are the usual propositional connectives.

" Function declarations
funct(argl:typel,...,argn:typen) : type declares a function named funct with argu-
ments of various declared types, and which returns a value of type type. If argi
is of type typei for : in [1..n] then funct(argl,...,argn) is the value of the function
applied to those arguments.

* Conditionals
if A then B else C is an abbreviation for a function which returns the value B if
A is true, and returns the value C otherwise. A must be a boolean value, and B
and C must be of the same type.

" Comments
Lines of comments describing the features of the model are preceded by bullets
(0).

We have avoided abbreviating the names of types and functions except in extreme
cases. This is intended to preserve as much of the intuitive content as is possible.
Many names will be overloaded. For example, the name entity stands for a type, and it
also stands for several different functions. These ambiguities can always be resolved by
context. In particular, the different functions with the name entity may be distinguished
by the type of their argument.

64 CHAPTER 2. POLICY

2.3.5 Model

2.3.5.1 Types and Restrictions on Types

2.3.5.1.1 Entities The entities which are instances of these types are the abstract
entities out of which SDOS is built.

type entity

type host

restrict host c entity

type link

restrict link C entity

type location = host U link

" hosts are any entities performing processing in parallel.

" links are entities which hosts use for communication.

" a location is either a host or a link; it is an entity which is spatially separated
from other locations.

type user

restrict user C entity

type group = powerset(user)

e users are the human users of SDOS.

type object

restrict object c entity

type abstract-type = powerset(object)

e objects are the abstract objects of the object-oriented paradigm.

type client

restrict client c object

type terminal-interface

restrict terminal-interface c client

type type.manager

2.3. THE FORMAL MODEL 65

restrict type-manager C client

type primary-client = user U type-manager

* clients invoke abstract operations on objects.

* every client acts on behalf of some primary-client.

type binding = name x object-uid

restrict directory C object

type name

type object-uid

type directory = powerset(binding)

o a name is a local identifier which is bound to a global identifier for some
object.

o the binding is stored in a directory.

type code-object

restrict code-object C object

type code-objects = powerset(code.-object)

" some objects are designated to hold the code for SDOS system objects.

" SDOS processes load their executable code from objects of type code-object.

type message-content

2.3.5.1.2 Labels The following label types will be used in the mandatory security
policy. They are constructed in the standard fashion from component types.

type label = level-set

type level = securitydlevel x integrity-level

type level-set = powerset(level)

type security-level = security.-classification x security-categories

type integrity-level = integrity-classification x integrity -categories

type security -category

type security-categories = powerset(security-category)

66 CHAPTER 2. POLICY

type integrity-category

type integrity-categories = powerset(integrity.category)

type security-classification

type integrity-classification

2.3.5.1.3 Events SDOS execution histories will be sets of events of the types listed
below. Several points should be noted about the intended interpretation.-

* Every event is a send-message event. Most send-message events are internal com-
munication, occurring in the model only as intermediates for enforcing global in-
formation flow rules.

* Some send-message events are of subtype reply-message. Each reply-message event
will be associated with some send-message.

* Send-message events that are responses to clients are always of subtype reply-message,
and of subsubtype abstract-operation-event. These are the SDOS commands of
various kinds. They are interpreted as happening when a command successfully
completes and notifies the requesting client of its completion. Related events, such
as the issuing of a command, internal changes and messages, and final, external
notification of failure are not abstracLoperation-events; they are other, undistin-
guished, events of the parent type sendmessage.

* Different events of the same type will differ in some of their attributes, such as the
time and place at which they occurred. Attributes will be listed in the functions
section.

type event = send.message

type history = powerset(event)

type send-message

type reply-message

restrict reply-message C send-message

type requestto-read

restrict request-to-read C send-message

type create

restrict create c send-message

2.3. THE FORMAL MODEL 67

type destroy

restrict destroy C send-message

type abstract-operation_event

restrict abstract-operation-event C reply-message

type command = DACGcommand U
set-experimental U
set-levels-modifiable u
label-command U
set-extensible j
enable-read.downs u
disable -read-downs U
enable -manager-create/abort u
disable -manager -create/abort u
protect U
mc iify.=controlling-group u
set-direct u
set-auditing-off u
set-auditing-on u
set .auditing-settable U
enable.auditing u
disable-auditing
restrict-directories u
unrestrict -directories u
log-command i
directory -command

restrict command c abstract-operation -event

type DACcommand = grant L rescind

type laiel-command = set-label j set-MLS u set.single-level

type log-command = login _ logout

type directory -command = add-binding u delete-binding

type grant, rescind

type set-label

type stMLS, set.single-level

type protect

68 CHAPTER 2. POLICY

type modify controlling-group

type set-direct

type set-experimental

type set-levels-modifiable

type set-extensible

type enable -read -downs, disableread.downs

type enable jnanagercreate/abort, disable .managercreate/abort

type set.-auditing-off, set.auditing.on, set -auditing .settable

type enable-auditing, disable-auditing

type restrict-directories, unrestrict-directories

type login, logout

type add-binding, delete-binding

type audit-value = {auditingoff, auditingsettable, auditing-on}

type abstract-operation

2.3.5.2 Functions and Restrictions on Functions

2.3.5.2.1 Parameters of Events Every event has parameters which depend on the
type of the event. The following functions return those parameters.

function sender(send-.. "ssage) : entity

function receiver(sendmessage) ! entity

functi. n messageievel(send-message) : message-level

function message(send .message) : message-content

function client(abstract-operationevent): client

restrict V aoe: abstract-operation -event(receiver(aoe) = client(aoe))

function abstract -operation (abstract.operat ion.-event) : abstrac -operation

function object(abstre t -operation -event) : object

2.3. THE FORMAL MODEL 69

function target(DAC.command) : primary-client

function target -operation(DAC.command) : abstract -operation

" for granting and rescinding discretionary access rights, these

" functions return the client for which the right is granted, and

" the operation being controlled.

function entity(label-command) entity

function label(setlabel) : label

function label(create) : label

function abstract-type (protect) abstracttype

function abstract-operation (seto-direct) : abstract-operation

function group (modify .controli ni,.group) : group

function binding(directory-command) : binding

function user(log-command) : user

2.3.5.2.2 Distributed Phenomenology For a distributed system, there need not
be an unambiguous way to order the system's events in time. Therefore, the values of the
security policy parameters will be defined unambiguously as functions of events, rather
than as functions of time. Because SDOS is distributed, its underlying network may
become partitioned into subnetworks which cannot communicate. Therefore, the value
of any policy parameter at event A must be defined only in terms of events that can
causally affect A. The following functions define can causally affect phenomenologically,
i.e., in terms of other events which could provide a causal link.

function location(event) : location

restrict

V sm: sendamessage(sender(sm) E location -* sender(sm)=location(sm)

" every send.message will be ar-ociated with some location.

" every inter-location send will be associated with the location from which it
was sent.

function location-ordered(loc:location, ev:event) : boolean =

location(ev) = loc or (ev E send.nessage and receiver(ev) = loc)

70 CHAPTER 2. POLICY

" a location loc will impose a total ordering on every event ev satisfying this
predicate.

" the ordering includes all events directly associated with loc, plus all messages
received from other locations.

function sequenced(event, event) : boolean

restrict

'V evi: event(not sequenced(evl,evl))

V evl,ev2: event(
if location-ordered(location(ev 1),ev2) or
loc at ion -ordered (location (ev2) ,ev 1)
then not evl=ev2 - sequenced(evl,ev2) zor sequenced(ev2,evl)
else not sequenced(evl,ev2))

V evl,ev2,ev3: event(
sequenced(ev 1,ev2) and sequenced(ev2,ev3) -- sequenced(ev 1,ev3))

" sequenced is a total ordering of events for each location.

* pairs of events which cannot be ordered at a single location are not related
by sequenced.

" pairs of events which are ordered at more than one location must be sequenced
in the same order for each.

function causal(evl:event, ev2:event) : boolean =
(sequenced(ev 1,ev2) and iocation-ordered(location (ev2),ev 1)) or
3 sm: send-message(sequenced(sm,ev2) and causal(evl,sm))

restrict

V' evl: event(not causal(evl,evl)

V evl,ev2: event(causal(evl,ev2) and causal(ev2,evl) -- evl=ev2)

V evl,ev2,ev3: event(
causal(evl,ev2) and causal(ev2,ev3) -- causal(ev 1,ev3))

* causal is a partial ordering of all events.

" if two events are causal, then there is a chain of sendmessages which could
have propagated information from one to the other. it must therefore be
possible to causally connect one to the other.

function before(evl,ev2) : boolean

restrict

2.3. THE FORMAL MODEL 71

V evI: event(not before(evl,evl))

V evl,ev2: event(not evl=ev2 - before(evl,ev2) zor before(ev2,evl))

V evl,ev2,ev3: event(before(evl,ev2) and before(ev2,ev3) -- before(evl,ev3))

V evl,ev2: event(causal(evl,ev2) --+ before(evl,ev2))

9 before is a total ordering of all events which extends the partial order defined
by causal.

function originating(reply -message) : send-message

restrict

V rm: reply.message(
sender(rm) =receiver (originating(rm)) and
receiver(rm) =sender(originating(rm)))

restrict

V rm: reply-message(sequenced(originating(rm),rm))

* every reply was evoked by the send returned by originating.

function initial.send(send.-message) : send-message

restrict

V sm: send-message(initial-send(sm) = sm or
E prey: send.message(
sequenced(prev,sm) and
sender(sm) = receiver(prev) and
message(sm) = message(prev) and
initial-send(sin) = initial-send(prev)))

function initial-sender(sm: send.message) : entity = sender(initial-send(sm)

" a message may be passed along via a chain of entities.

" initial-send returns the first send in the chain.

function exist(ent:entity, ev:event) : boolean = 3 cr: create(
receiver(cr)=ent and causal(cr,ev) and
V ds: destroy(
receiver(ds)=ent and causal(ds,ev) --- before(ds,cr)))

" defines whether an entity exists.

" all possible entities are assumed to exist potentially;

" actual existence is brought about by sending a create message.

72 CHAPTER 2. POLICY

2.3.5.2.3 Levels and Labels These functions are needed to define relations among
levels.

function lteq (security.-classification, security..-classification) :boolean

restrict

V sci: security.-classification(lteq(scl, sci))

V scl,sc2: security -classification(
not scl=sc2 - lteq(scl, sc2) zor Iteq(sc2, scl))

V scl,sc2,sc3: security-classification(
lteq(scl, sc2) and lteq(sc2, sc3) - lteq(scl, sc3))

esecurity..-classifications are totally ordered.

function lteq (integrity.-classific ation, integrity A.cassific ation) boolean

restrict

V ici: integrity.-classification(lteq(icl, ici))

V icl,ic2: integrity -classification(
not icl=ic2 -~ lteq(icl, ic2) zor lteq(ic2, ici))

V icl,ic2,ic3: integrity..classification(
Iteq(icl, ic2) and lteq(ic2, ic3) -+ lteq(icl, ic3))

* integrity classifications are totally ordered.

function lteq (sI 1 :ecurity -level, s12 :security level) : boolean
lteq(sll1.security..classification, sl2.secu rity -classification) and
sll.security-categories E s12. security -categories

function lteq(ill:integrity-level, i12: integrity level) :boolean=
-.eq(il1. in te grity..-classification, i12. integrity -classification) and
ill. integrity -.categories E i12 .integrity-categories

function domninates (IL:level, 12:level) :boolean=
lteq(12.securityievel, ll.security-level) and
lteq(ll.integrityievel, 12. integrity level)

2.3. THE FORMAL MODEL 73

2.3.5.2.4 Security Configuration These functions return the current configura-
tion of the policy parameters at a given event.

function experirnental(ev:event) :boolean=
3on: set..-experimental(causal(on,ev))

function tamperproof(ev:event) : boolean =not experimental (ev)

function levels-mrod ifi able (ev:event) : boolean=
3on: set Jbvels-.modifiable(causal(on,ev))

function levelsiionmodifiahle(ev:event) : boolean=
not lev els-nodifi able (ev)

function changelabel(ent:entity, ev:event) : boolean=
((ev E set-label or ev E create) and entity(ev)=ent)

function label (ent:entity, ev:event) : label

restrict

V ent,ev: entity(3 newest: event(
change iabel(e nt,newest) and
causal (newest,ev) and
V new: event(
changelabel(ent,new) and causal(new,ev) --f before(new,newest))
and label (ent,ev) = label (newest)

" this function defines the current label of an entity.

" the label is determined by the latest change-label event that can be causally
connected to the current event.

function manu alassu red -extensible (ev:event) :boolean-
3on: set-.extensible(causal(on,ev))

function MLS(ent:entity, ev:event) : boolean=
3on: set..MLS(

entity(on) = ent and causal(on,ev) and
IV off: set-.singleievel(
entity(off) = ent and
causal(off,ev) - before(off,on)))

function single -level (ent:entity, ev:event) : boolean = not MLS(ent,ev)

function readd owns.e nabled (ev:event) : boolean=
:on: enable-.read..-downs(causal(on,ev) and

V off: disable.read-.downs(causal(off,ev) - causal (offon)))

74 CHAPTER 2. POLICY

function read -downs-disabled (ev:event) : boolean = not read.downsenabled (ev)

function manager.create-abort -enabled (ev:event) : boolean =

3 on: enable-manager-create -abort(causal(on,ev) and
V off: disable-manager-create-abort(
causal(off,ev) -- causal (off,on)))

function manager.create-abort -disabled (ev:event) : boolean =

not manager -create -abort-enabled (ev)

function abstract-type(object) : abstract-type

" this function defines a unique association between each object

" and its abstract type.

function protected(at:abstracttype, ev:event) : boolean =

3 p: protect(abstract-type(p)=at and causal(p, ev))

function controlling-group(o:object,ev:event) : group

restrict

V usr: user(usr E controlling.group(o:object,ev:event)
V newest: modify -controlling-group(
object(newest) = o and causal(newest,ev) and
not 3 newer: modify..controlling.group(
object(newer) = o and causal(newer,ev) and
causal(newest,newer)) -,

usr E group(newest)))

o the current controlling group is the intersection of the groups named in all
modify commands which have not been superceded for this object.

function direct-use (ao:abstract-operation, ev:event): boolean =
3 on: set-direct(abstract.operation(on)=ao and causal(on,ev))

function auditing(ev:event) : audit-value =
if 3 off: set.auditing-off(causal(off, ev))
then auditing-off
else if 3 set: set.auditing.settable(causal(set, ev))
then auditing.settable
else auditing-on

2.3. THE FORMAL MODEL 75

function aud itin g-disabled (ev: event) :boolean-
3 off: disable..auditing(causal(off,ev) and
V on: enable-auditing(causal(on,ev) - causal (on,off)))

function audit in g-.enabled (ev:event) :boolean=
not auditing..disabled(ev)

function directories-.unrestricted (ev :event) : boolean=
9 off: un restrict directories(causal(off,ev) and
V on: restrict directories(causal(on,ev) -, causal (on,off))

function d irec tories..xestric ted (ev: event) : boolean = not directories-unrestricted (ev)

function in..-directory (d:d irec tory, b:binding, ev:event) :boolean=
3 add: add-.binding(
object(add) = d and
binding(add) = b and
causal(add,ev) and
V del: delete-binding(
object(del) d and
binding(del) = b and
causal(del,ev) - before(del,add))

function primary (client) : primary-.client

function primary _clIien t (aoe: abst ract-.ope ration.-event) :primary-.client=
primary(client(aoe))

* every client which is not primary is acting on behalf of some primary client.

function logged(u:user, ti:terminal-interface, ev:event) :boolean=
3 in: login(
user(in) = u and
client(in) = ti and
causal(in,ev) and
V out: logout(
user(out) = u and
client(out) = ti and
causal(out,ev) - before(out,in)))

restrict

V u: user, ti: terminal-interface, ev: event(
logged(u,ti,ev) - primary(ti)=u)

*this function returns true if this terminal interface is associated with this user.

76 CHAPTER 2. POLICY

* a terminal associated with a user is acting on behalf of that user.

function discretionary -right (aoe:abstract-operationevent, ev:event) boolean -

3 g: grant(
object(g) = object(aoe) and
target(g) = primaryclient(aoe) and
target-operation(g) = abstract-operation(aoe) and
causal(initial-send (g) ,ev) and
V r: rescind(
object(r) = object(aoe) and
target(r) = primary -client(aoe) and
target-operation(r) = abstract-operation(aoe) and
causal(initial-send(r),ev) -
before(initial-send (r),initial-send(g))))

o defines whether a discretionary right for event aoe exists at event ev.

2.3.5.2.5 Other Useful Functions

function system-architect() user

function system.manager() user

function systemauditor() user

function system-certifier() user

function system-controller() : user

9 these functions are constants which denote users who act in special system
roles.

function object(objectuid) :object

e a mapping from uids to objects that they represent.

function assured(ent:entity, ev:event) : boolean -
MLS(ent,ev) or ent E terminal-interface

function code(entity) : code-objects

* a fixed mapping from entities to executable code which they may read. This
mapping is unimportant for entities which are not assured.

function security -relevant (send-message) : boolean

2.3. THE FORMAL MODEL 77

restrict

V corn: command(security -relevant (originating(com)))

* all command events are originated by security-relevant request messages.

function internal-form(message -content) : message-content

* a mapping from a user-recognizable command form, to an internal form.

2.3.5.3 Policy

The policy rules are grouped here into the same categories as can be found in the SDOS
security policy.

2.3.5.3.1 Configuration Policy

policy

V config,ev: abstract-operation-event(
primary-client(config) = system-architect() and
not primary.-client(ev) = system-architect()
causal(config,ev))

* all preconfiguration of the system must be done by the system architect.

e this preconfiguration includes, conceptually at least, creation and initiali a-
tion of some entities and their attributes, such as their labels.

policy

V ev: set-experimental(primary-client(ev) = system.architect 0)

policy

V sm: sendmessage(tamperproof(sm)
(initial-sender(sm) E code-jhiect and
assured(receiver(sm),sm) -,

initial-sender(sm) E code(receiver(sm))))

* for a tarnperproof system, code that is loaded into assured processes

* must be taken from some unmodifiable set of code objects.

policy

78 CHAPTER 2. POLICY

V sm: send.message(tamperproof(sm) --

(receiver(sm) E code-object and
not sm E request.to.read and
3 ent: entity(
receiver(sm) E code(ent) and
assured(ent,sm))
V ent: entity(
receiver(sm) E code(ent)
ent E type.manager) and
initial-sender(sm) E client and
primary(initial-sender(sm)) = system-certifier()))

e for a tamperproof system, the code loaded into an assured process may be
modified only if that process is a type manager, and only if the modification
is made by the system certifier.

policy

V ev: set levelsmodifiable(primary -client(ev) = system-architect O)

policy

V ev: event(levels-nonmodifiable(ev) -* not ev E set-label)

* if levels are not modifiable, then labels may not be explicitly reset once an
object has been created.

policy

V ev: setlabel(primary -client(ev) = systernm.manager())

policy

V ev: set-extensible(primary-client(ev) = system-architect())

policy

V ev: event(ev E set.MLS) -- manual-assured -extensible(ev))

o the set of MLS entities cannot be expanded unless the system is manual-assured -extensible.

policy

V corn: command(

corn E set.MLS or
corn E set-single-level --

primary.-client(com) = system-certifier 0)

2.3. THE FORMAL MODEL 79

policy

V corn: command(
corn E enable rmanagercreate/abort or
corn E disable-manager-create/abort or
corn E enableread-downs or
com E disable-read-downs --
primary -client (corn) = system.ranager()

policy

V corn: conxand(
corn E set.auditingoff or
com E set -auditing..settable or
com E set.auditing-on
primary client(com) = systemarchitect O)

policy

:or: command(
corn '5 enable-auditing or
corn E disable-auditing ----
primary.client(com) = system.-manager() and auditing.settable(com))

policy

V com: command(
com E restrict-directories or
com E unrestrict -directories
primary -client (corn) = system.rmanager())

policy

ev: event, d: directory, b: binding(

in-directory(d,b,ev)
dominates(label(object (b.object._uid)).current level, label(d).currentievel)

and
(directories -restricted (ev) --

label(object (b.objectuid)).current level = label(d).currentlevel))

9 a directory's level is dominated by the level of any object whose name it holds.
If directories are restricted, each object named in a directory has the level of
that directory.

80 CHAPTER 2. POLICY

2.3.5.3.2 Discretionary Policy

policy

V aoe: abstract-operationevent(
3 ti: terminal-interface(logged(primary .client(aoe), ti, aoe)))

* a user must be logged in for requests under his authorization to be honored.

policy

V ev: protect(primary -client(ev) = system-certifier())

policy

V ev: modify.controlling-group(
primary-client(ev) = systemcontroller())

policy

ev: comrnmand(ev E grant or ev E rescind
primary -client (ev) E controlling -group(object (ev), ev))

policy

V ev: set-direct(primary-client(ev) = system-controller())

policy

V aoe: abstractoperationevent(
direct-use(abstract-operation(aoe), aoe)
primary_client(aoe) E terminal-interface)

e direct-use operations must come from user's terminal.

policy

I7 aoe: abstract.operationevent(
protected(abstracttype(object(aoe)), initial-send(aoe)) --
initial-sender(aoe) E type-manager and
discretionary right(aoe, initial-send(aoe)))

* if an operation governed by discretionary access control is completed, then
a type manager is responsible, and the discretionary rights for the operation
must be known by the type manager at the time of the operation. This is
a constraint on type managers, rather than on the behavior of the entire
system.

2.3. THE FORMAL MODEL 81

2.3.5.3.3 Mandatory Policy

policy

V sm: send-message(exist(sender(sm),sm))

* entities which do not exist do not send messages.

policy

V ent: entity, ev: event(single-ievel(ent,ev)
V 11,12: level(
11 E label(ent,ev) and
12 E label(ent,ev) - 11=12))

& single-level entities must be labeled with unique levels.

policy

V sm: sendmessage(
level(sm) = label(sender(sm),sm)

* message label must be one for which the sender is authorized.

policy

V sm: send-message(
(sm E requestto.read and read-downs.enabled(srn)) or
(sm E create and receiver(sm) E type-nanager and
managercreate/ abortenabled(sm)) or
sm E leak or
] 1ev: level(
lev E label(receiver(sm),sm) and
dominates(lev, level(sm))))

* receiver must be authorized to receive a message with this label.

policy

Every MLS entity must be restrictive with respect to every level. (This policy rule
cannot be stated in the language we have used for the rest of the Formal Model.
See sections 2.1.2.3 and 4.2 for formal statements of restrictiveness.)

Chapter 3

Design

3.1 The Functional Description

3.1.1 Introduction

The purpose of the functional description is to describe the decomposition of the sys-
tem into logical components, the dssignment of functions to those components, and the
description of approaches likely to be taken to implementing those functions. In this
section we begin by considering the hardware and software that makes up the distributed
environment to identify the context for the system. We then consider our approach to
developing the design, of which this description is the first step. Section 3.1.2 describes
the functions that make up the system and the principles that underlie their definition.

3.1.1.1 SDOS Implementation Strategy

Implementation strategy refers to the set of hardware and software technologies used in
implementing the host and network facilities making up the distributed system. Con-
straints on the usable implementation strategies will often limit the achievable function-
ality of a system, since certain items of functionality can only be achieved with certain
technology. Conversely, constraints on the functionality (absolute requirements) will
constrain the implementation strategies to those that are able to support the required
functionality. This section discusses a number of implementation strategies and points
out the advantages and disadvantages of each, including the functionality that can and
cannot be achieved using each strategy.

3.1.1.1.1 Features And Assurance The attributes of a secure system include,
among other things, security features and assurance. Security features include such
things as user authentication, discretionary access controls, mandatory controls, and
auditing.

83

84 CHAPTER 3. DESIGN

Assurance is a measure of an evaluator's confidence that the security features are
correctly implemented and protected from tampering. Assurance is achieved by means
of some combination of hardware protection features, advanced software design and
implementation technology, project management and source control procedures, code
inspection, penetration testing, and formal verification.

Functionality is usually thought to be synonymous with features; but in a secure
system, assurance is at least as important a part of functionality as features are. The
Criteria specify, for each evaluation class, a detailed set of assurance requirements, as
well as a set of required security features. It is convenient to name assurance levels
after their corresponding evaluation classes - thus, "B2 assurance" means that which is
achieved by following the assurance requirements in the B2 section of the Criteria. In a
distributed system, whose components are implemented on many different computers, it
is useful to talk about the assurance level of each security feature, or the assurance of the
individual components that implement each security feature, rather than the assurance
of the system as a whole.

It is a fundamental property of assurance that the assurance of a component, C, can
be no greater than the assurance of the components "below" C. Below is loosely defined,
such that a component, B, is below C if 1) C depends on B for proper operation (e.g.,
C calls B), or 2) B is able to access C's databases (e.g., B is in a lower, more privileged
ring than C).

In a traditional, single-host, layered operating system, the relationship between com-
ponents is clear, straightforward, and obvious. The components in lower layers or rings
are below those in higher layers or rings. In a distributed operating system, the rela-
tionships between components are much more complex. Different components can be
physically located in equally-privileged, mutually-suspicious protection domains (e.g.,
separate computers). Further, the logical relationship between components can be the
reverse of their physical relationship. For example, in a layered communications proto-
col, a higher layer may do encryption and then pass the encrypted data to a lower layer
that need not be trusted since it has no security function. Of course, the lower, insecure
layer must not be able to access the higher, secure layer's databases.

Each security feature specified in the Criteria has a minimum required assurance
level. For example, it would be pointless and unacceptable to implement mandatory
controls in a component having less than B level assurance. However, it is acceptable to
implement discretionary controls in a component with C level assurance, and mandatory
controls in a separate component having B or A level assurance.

Given the above considerations, an implementation strategy must be chosen that
allows each of the required security features to be implemented in a component having
the appropriate level of assurance.

3.1.1.1.2 Alternative Strategies In addition to security features and assurance,
we must consider time and cost of implementation of the SDOS, preservation of in-

3.1. THE FUNCTIONAL DESCRIPTION 85

vestment in existing application and operating system software, and any specialized
requirements of the applications to be run on the SDOS.

There are two implementation strategies for distributed operating systems: native
and layered. A native DOS implements all distributed functions (such as interprocess
communication, distributed authentication, and distributed file system functions) as well
as conventional operating system functions (such as process scheduling, memory man-
agement, and 1/0 control). In contrast, a layered DOS is executes as a layer on top of the
OS on each host. The native approach is adopted by the Mach DOS 'Young et al. 87!,
while the layered approach is adopted by the Cronus DOS ISchantz et al. 86.

Native DOS's have the benefit of providing a uniform set of OS services, such as
emulation of UNIX by Mach. However, they have the disadvantage of being unable to
integrate machines having different operating systems. The layered approach adopted
by Cronus allows the DOS to run on heterogeneous hosts, in a layer above existing
operating systems such as UNIX and VMS. The existing operating system is called the
constituent operating system (COS).

There are four implementation strategies for secure layered DOSs. Strategy 1 consists
of adding security features to an existing DOS. This has the obvious disadvantage that,
if, for example. the underlying operating systems have only C2 assurance, the resulting
SDOS could have no more than C2 assurance. This is unacceptable because multilevel
secure (MLS) implies at least B2 assurance, and our objective is a MLS SDOS with an
Al rating. This alternative is mentioned only for completeness.

Strategy 2 consists of porting a DOS to a MLS COS (having assurance of at least
B2 and preferably Al), and then adding the appropriate security features. This would
involve partitioning the DOS into security-relevant and non-security-relevant parts, and
making the former part of the TCB.

This strategy has two variants: Strategy 2A., the native approach, involves writing a
MLS COS that provides exactly those features needed to support SDOS; and Strategy
2B, the layered approach, involves using an existing MLS COS and building SDOS on
top of it.

Strategy 2 has the advantage of being MLS, but it has the disadvantages of losing
heterogeneity and losing investment in much of the existing application software. Strat-
egy 2A has the additional disadvantages of long development time and high cost for the
COS, while 2B avoids these, with zero COS development time, and COS development
cost shared by all the customers who purchase rights to the existing MLS COS. In addi-
tion, the existing COS would have at least some software development tools that run on
it, and possibly also some useful application software. There are several variations on
strategy 2A that depend on the degree to which the COS functions are integrated with
the DOS functions. However, the integration issue has a greater impact on performance
and adaptability than cost.

Strategy 2B is clearly preferable on cost grounds, since the MLS COS does not have
to be developed. Strategy 2A would only be chosen if no suitable existing MLS COS

86 CHAPTER 3. DESIGN

could be found. Strategy 2A may be adopted as a longer-term strategy for enhanced
performance if existing application software can be preserved.

Strategy 3 involves the use of secure front-ends or access machines to connect existing
C2-rated DOS hosts to an insecure network. Mandatory controls would be implemented
in the MLS access machines, while discretionary controls would be implemented in the
C2 hosts. This strategy has the advantages of preserving heterogeneity and preserving
the investments in the existing DOS, the applications that run on it, and all the usable
software development tools and application software that runs on the existing COSs. It
has the additional advantage of lower SDOS development cost than either alternative in
strategy 2. However it has the disadvantage of not providing for any MLS hosts. This
makes some classes of SDOS application systems very awkward, if not impossible. to
implement.

Strategy 4 is a hybrid of strategies 2 and 3. It involves use of a MLS COS, on which
SDOS software would be built, which could serve either as a secure front-end to con-
nect existing single-level systems, or as an MLS SDOS host, running SDOS application
software. This combines the advantages of strategies 2 and 3: preservation of hetero-
geneity and investment in existing application software, and provision for MLS SDOS
hosts. Implementation cost would be somewhat higher than that of strategy 2 alone.
but not significantly so, if the hybrid nature of this strategy were in the design from
the beginning. This strategy has one additional advantage over either of strategies 2
or 3: exi-ting, non-distributed applications, that need to be interfaced to a distributed
system, but which cannot be changed for reasons such as extreme age, would require
not only security in the interface machine, but also some non-security-related processing,
to convert old data formats and communication protocols into those used by modern
networks and hosts. The hybrid MLS SDOS machine provides both capabilities in one
machine.

Strategy 4 has two variants, corresponding to 2A and 2B. The hybrid software could
be built either on an existing MLS COS (4B), or on an MLS COS written as part of
SDOS development (4A). As with strategy 2B, 4B is preferable, provided that a suitable
existing MLS COS can be found.

3.1.1.1.3 Discussion of Strategies Strategies 3 and 4 share an important advan-
tage: the ability to connect insecure DOS hosts to the SDOS. There will always be
some specialized hosts, such as very-high-speed CPUs, or LISP machines, whose use is
essential to the success of the application, but which are unlikely to ever have a MLS
operating system. The access machine approach allows for connection of such hosts to
the SDOS.

Strategy 2 has the serious disadvantage of loss of heterogeneity. This means that
the entire SDOS must be composed of one type of CPU, running one MLS COS. All
investment in existing applications is lost, unless they can be ported to the new COS.
No provision is made for connecting specialized, insecure hosts to the SDOS. (Porting
SDOS to several MLS COSs, and possibly writing MLS COSs for several types of CPU,

3.1. THE FUNCTIONAL DESCRIPTION 87

would be prohibitively expensive.)

Strategy 4 provides for heterogeneity without incurring the cost of SDOS (and pos-
sibly COS) development for several different CPUs.

Ranking the strategies by cost and functionality: Strategy 4 provides the most com-
plete functionality and has the highest cost. Strategy 2 is a close second in cost but has
the serious disadvantage of loss of heterogeneity. Strategy 3 is lowest in cost but has the
disadvantage of not providing for MLS hosts. Strategy I was eliminated because it is
not MLS.

3.1.1.2 System Environment

The architectural characteristics of the computer system is an important consideration in
choosing an approach for the SDOS (and any other) development effort. The distributed
environment being considered consists of a set of hosts connected by a communication
subsystem. Initially, the targeted communication subsystem is a local area network.
Expansion to a more diverse environment is dependent on low-level communication
protocols, encryption capabilities, and proper labeling of messages on each host. These
considerations are orthogonal to the model adopted for interprocess communication in
SDOS, and other communication media can be considered at a later point.

A constituent operating system (COS) refers to the native operating system on a
host. SDOS (or any other distributed operating system) can either be implemented as
the native operating system on a host or on top of the COS. There are several classes of
host/COS system pairs that are candidates for integration into the SDOS environment.
Each host class has a different impact on the implementation of SDOS on hosts of the
class. Viewing SDOS as a technology for interconnecting systems, the following list
contains the major classifications of machines that could be usefully connected:

" Native SDOS Hosts
Hosts that have no constituent operating system can run SDOS as the native OS.
While the difficulty of reconciling the SDOS security policy with COS security is
not an issue on native SDOS hosts, native implementation of a full-scale operating
system is a major undertaking that is not merited in the early phases of this effort.

" Evaluated Multi-level Secure Hosts
This class contains systems that have been evaluated by the DoD Computer Se-
curity Center using the Trusted Computer System Evaluation Criteria and have
received an A or B rating. They support mandatory security, which would have
to be reconciled with the SDOS definition of multi-level security, as well as discre-
tionary access controls.

" Evaluated Hosts Providing Access Controls
This class contains systems that have been evaluated by the DoD Computer Se-
curity Center using the Trusted Computer System Evaluation Criteria and have

88 CHAPTER 3. DESIGN

received a C rating. As with A and B systems, the SDOS discretionary access con-
trols are likely to provide finer grained access control than these systems. These
hosts will execute at a single security level, and the difficulty is providing secure
mechanisms in the kernel that enforce the SDOS information flow rules.

" Minimal Protection Time-Shared Systems
These systems provide unreliable or inadequate security features, and cannot be
trusted to distinguish between individual users accurately. Minimal protection
hosts will execute at a single security level and access control will by supported at
the level of the entire host.

" Workstations
Workstations are powerful, sophisticated single-user machines in which the owner
acts as both user and administrator for the host. Unless administrative control
can be removed from the user, the software executing on these machines is subject
to corruption. Workstations can be used in SDOS only if they access the commu-
nication subsystem through a trusted interface that reliably labels messages with
its source and security level, and mediates all interaction between the workstation
and the network.

" Access Machines
Access machines provide secure interfaces for collections of terminals and nonse-
cure hosts to the distributed system. The services they provide can range from
simply labeling messages with the proper source and security level to participating
in user authentication and client identification, and implementing layers of the
interprocess communication protocol.

The envisioned use of SDOS is as a facility to connect both single-level and multi-
level hosts into a single secure distributed system. We believe such an integrated system
is the most feasible given our perception of the evolution of computer systems over the
next decade and beyond. Specifically, single-level systems are necessary because such
nonsecure systems (connected to a secure network) will continue to be 5 to 10 years more
advanced and considerably more widely accepted than their multi-level secure counter-
parts. Furthermore, they will be considerably more specialized, providing capabilities
customized for supporting (for example) artificial intelligence and computationally in-
tensive applications. As a result, their inclusion in a system will be crucial.

MLS hosts are also an important part of SDOS. Multi-level objects (e.g., databases)
and tightly coupled objects (symbolic name directories) require configuration together
on a single host for performance reasons. MLS hosts also simplify information flow
between security levels when the flow does not violate the security policy.

The application base intended for SDOS are large, complex distributed applications
that are adequately robust to survive failures and are well-structured to facilitate their
evolution. Our experience in distributed systems has convinced us of the importance of
supporting heterogeneity in the hardware and software used to construct distributed sys-

3.1. THE FUNCTIONAL DESCRIPTION 89

tems. Single level and MLS hosts are but one example of this type of heterogeneity likely
to be encountered in computer installations needing secure distributed applications.

3.1.1.3 The Approach

The work to date on the SDOS project has concentrated on adapting an object-based
architectural model for structuring the system to include multi-level security features,
and on developing a global security policy that is applied to each host. Software in the
SDOS is organized by decomposing the system into a set of basic system concepts and
treating all of these concepts in a uniform way. The basic system concepts are framed
as objects, or instances of abstract datatypes. Such basic objects include users. hosts,
processes, and files. A type is a set of objects that are all accessed in the same way, with
a set of operations defined by the type. New types can be created, and types serve as
the basic constructors for building software. Any application can be expressed as a set
of new types. The object model used in SDOS was adapted from the Cronus DOS under
development at BBN Laboratories with funding from Rome Air Development Center,
where the effectiveness of the underlying model has undergone extensive evaluation.

Since every host in a heterogeneous system will have its own definition and imple-
mentation of security, a global security policy is necessary as a foundation for allowing
different hosts to interact securely. The task of connecting a host into SDOS involves
reconciling the local security policy with the global security policy, determining the
assuredness of software running on the host, and selecting the appropriate security at-
tributes of the host.

Another aspect of host integration is the implementation of SDOS services necessary
to allow the host and the distributed system to be interconnected. These services must
be implemented with sufficient assurance to provide multilevel security. This means they
must have a Computer Security Center B2 assurance at a minimum. The assurance of
these services determines the assurance of the SDOS. Thus, B3 or Al are desirable goals.

If the SDOS services are implemented within a host, on top of the COS, they can
have no greater assurance than that of the COS. The resulting SDOS can have no greater
assurance than that of the lowest-rated host.

One approach is to implement the SDOS services in an access machine which con-
nects the host with the network. The access machines can be homogeneous (the same
hardware and operating system being used for all access machines). The access machine
software (operating system and SDOS services) can have high assurance at relatively
low cost, since the volume of software will be small. This approach allows an SDOS
with Al assurance to be built out of hosts having much lower assurance (C2 or even
D). This approach has been identified as the one that holds greatest promise for short
term results in connecting single level machines and demonstrating distributed system
security. However, as discussed in Section 3.1.1.1.3, this approach results in functional
limitations because of its inability to support MLS hosts.

90 CHAPTER 3. DESIGN

The construction of multi-level secure hosts to support SDOS is considerably more
difficult than connecting existing single level hosts to a secure network. For this reason,
we concentrated our effort on the design of a multi-level secure host. This approach
offers the opportunity to investigate difficult verification problems (e.g., how to ensure
that MLS services maintain separation of information in different access classes) and
examine difficult design decisions during this effort.

Our approach to the SDOS development effort consisted of the following overlapping
phases:

* Host Selection
Started in parallel with the prototype design, this stage involved examining host
and corresponding secure constituent operating system candidates that could form
the implementation base for SDOS. The lack of availability of supported multi-level
secure systems on the market greatly limits the choices available.

" Kernel Prototype Design
It is first necessary to experiment with the SDOS kernel (described in section
3.6.2) and evaluate its adequacy and efficacy in providing interprocess communi-
cation and multi-level security services based on the underlying services provided
by the implementation base selected in the first phase. We developed a top level
specification describing the programmer interface to the SDOS services, a detailed
design specification describing the SDOS internals (including layering, definition
of objects and operations, and the security relevant operations), and a lower-layer
specification describing the relationship between SDOS and the underlying system.

" Kernel Prototype Development
A prototype kernel should be quickly developed to experiment with many of the de-
sign issues. Depending on the maturity of the development facilities on the secure
host, the prototype kernel could be developed on a development system host pro-
viding a good programming environment. The kernel could then be implemented
as an application on the COS (e.g., UNIX, VMS). Such an implementation would
provide useful performance comparisons with the Cronus DOS. As the develop-
ment environment for the selected secure machine matures to the point of making
implementation on it feasible, the implementation could be ported onto the secure
machine.

" Test and Evaluation
Although evaluation is needed within every phase, an evaluation of the prototype
will determine if the object model is an appropriate structuring concept in a secure
system and if the coexistence of SDOS with constituent systems is feasible. Eval-
uation involves analysis of performance characteristics, security violations (such
as denial of services, covert channels, and compatibility between security policies)
that cannot be corrected, and ease of use. Future steps depend on the results of
the evaluation.

3.1. THE FUNCTIONAL DESCRIPTION 91

3.1.2 Principles Underlying SDOS Functions

3.1.2.1 Introduction

SDOS is a distributed operating system intended for supporting the secure execution of
application software running in a distributed computer system consisting of a diverse
set of hardware and software resources. Support for distributed applications requires
provision for the following activities:

1. System administration and operation,

2. System development and maintenance, and

3. Application development and maintenance.

SDOS is modeled after other distributed operating systems that support the concept
of data abstraction as a fundamental and pervasive architectural principle for software
design. The SDOS orientation toward security will necessarily limit flexibility and have
a significant impact on performance, based on the experiences of other secure operating
system development efforts. Despite these concerns, we view the additional security re-
quirements of SDOS as an evolutionary extension of general-purpose distributed operat-
ing systems. In order to support the development, maintenance, and operation activities
listed above, the following services will need to be provided in an SDOS implementation:

Object Management
Objects are the major components used to build the operating system and appli-
cations. An object is an instance of a type of resource; the type determines the set
of operations that can be invoked to access the object. Examples of objects include
files, large data structures, devices, and hosts. The operations invoked on objects
are performed by object managers. The use of the object paradigm improves the
system's modularity, leads to well-specified interfaces between system components,
and provides a uniform approach to structuring applications and system services.

* Process Management
The process is one of the object types in the SDOS system; a process is an object
used to perform a task. Processes may act as object managers by responding to
operation invocations, act as clients by invoking operations on objects, and issue
system calls. Large applications are decomposed into asynchronously executing

processes in much the same way as large data structures are decomposed into a
set of objects.

* Interprocess Communication (IPC)
Processes communicate by sending messages through a message switch on each
host. IPC is based on a client-server relationship between correspondents estab-
lished by a protocol for invoking operations on objects. Messages are dispatched
in a host transparent fashion, and the message switch on each host is responsible
for delivering messages to their destination.

92 CHAPTER 3. DESIGN

" Secure Information Transfer
SDOS transfers information between system components in correspondence with
the security policy, which models all transfer as message transfers between entities.
The major points of transfer that are relevant to the functional description are:
one process sending a message to another; an object manager accessing the state
of an object; communication between a host and the communications subsystem;
and communication between a process and a device.

" Access Control
Access to information is always modeled in SDOS as access to an object. Control-
ling access to objects involves two parts: authenticating the identity of a client,
and authorizing the client's access to an object based on the client's identity and
the object's type.

" Symbolic Naming
SDOS maintains two name spaces: system-level names (unique identifiers, or
UID's) used to create, locate, and destroy objects; and user-level symbolic names
chosen by the SDOS users and used to identify objects in applications. The sym-
bolic names are maintained in a hierarchical structure managed by the Catalog
Manager, whose primary responsibility is to map symbolic names into their corre-
sponding UID's.

" User Interfaces
There are two aspects of humans using the SDOS system: obtaining access through
an access point, and interacting with the system through a user interface. Certain
actions can only be safely and securely initiated by human users. It is essential that
secure access points are provided to allow system access through a user interface
which is assured to correctly translate user requests and forward them properly for
processing. Other users interfaces can also be developed for specific applications
or general-purpose system interaction.

" Controlled Software Development
Much of the software that executes in a secure system must meet a set of crite-
ria that establish its reliability and security. One means of ensuring that these
criteria are satisfied is to establish a controlled environment for software develop-
ment whereby it is impossible to execute software without first demonstrating its
trustworthiness. SDOS will provide a software development facility that simplifies
the task of developing secure software and helps to prevent execution of insecure
software.

" Configuration, Monitoring, and Control
SDOS will provide the basic facilities necessary to manually operate the system.

The remainder of this section describes each of these functional areas in more detail.

3.1. THE FUNCTIONAL DESCRIPTION 93

3.1.2.2 Object Management

The purpose of object management is to provide a means of manipulating the state of
an object in response to client's requests to access the object. There are several goals of
organizing a system in terms of objects maintained by object managers:

" Hiding the details of how an object is implemented from the clients (users, ap-
plications, and system services) that use it allows an object's implementation to
change without affecting the clients using it.

" The clean interface between clients and objects reduces the likelihood of interface
errors.

" A single structuring paradigm allows mechanisms to be applied uniformly across
all object types (e.g., access control and interprocess communication).

After initialization, the manager of an object commonly repeats the following tasks:

1. Receive an operation :avocation request from a client;

2. Check the privilege of the client to access the object;

3. Execute the operation, which can cause the object to be modified;

4. Returns the results of the operation to the client;

5. Waits until the next operation invocation request is received.

All objects have a state saved on stable storage in a repository called the object database.
When an object manager receives an operation invocation request, it obtains the object's
state from stable storage and begins access authorization.

Object management in SDOS is based on the following principles:

* Each object has a system-level, unique identifier (UID) used to locate the object
and direct invocation requests to the object's manager from anywhere in the sys-
tem. The UID of an object is not based on the object's host location.

" Each object has a single type. An object's type determines the operations that
can be used to access the object and the set of manager processes that can service
an invocation. The operations defined by an object's type are the protocols used
to access that object.

" An object can be accessed only through its manager. A manager implements the
interface to objects; objects may actually be implemented in a variety of ways.
For example, an object may be a device, a remote host, or a resource defined by
software developed independently of SDOS (e.g., a commercial database product).

94 CHAPTER 3. DESIGN

" New objects are created by a manager associated with the object's type.

" An object may be used to represent any instance of a resource, including a data
structure, a component of a database, a device, and a host. A file is an object used
as the building block for all applications in file-based operating systems. Although
the file type of object is supported in SDOS, it is only one way of storing data.
The object is a structuring concept that is used for building both applications and
SDOS services.

" There is flexibility in the mapping of objects to managers. A manager process may
service requests from a single client or from multiple clients; and may manage one
object of a single type, many objects of a single type, or objects of many different
types.

" New object types can be added to the system by creating an object manager's image
and configuring the manager in the system. SDOS is designed to be extensible,
where new types and instances of those types can be introduced into the system
by users with the privilege to do so.

" Any object can be given a symbolic name as a handle for users referencing the
object. All complex distributed applications in SDOS will be structured as a set
of clients and objects. However, the user interface of an application may not make
this structure visible to the user.

3.1.2.3 Process Management

A process is an object used to complete a task, and collections of processes serve as
the active elements used to build applications. The three defining characteristics of the
processes in SDOS are:

1. A process is the unit of sharing operating system resources, including memory, IO
devices and the processor on the local host. Thus, there is a low-level connection
between a process and the host on which it executes.

2. The internal activity of a process, namely the access of its memory, is distinct
from its external activity, namely interprocess communication and system calls, in
terms of performance, security, and operating system involvement. The primary
role of the operating system is with the external actions of a process by providing
a facility to create processes and allow them to communicate securely using an
object-based protocol.

3. Processes serve a dual role as both clients for and managers of resources. A client
process includes a user interface process that allows a user to interact with the
system, or an object manager that invokes operations on objects different from
the ones it managers. A process is a manager of an object if it is able to service
invocations requests addressed to the object.

3.1. THE FUNCTIONAL DESCRIPTION 95

Process management in SDOS involves a mechanism to create processes, modify
their attributes as they execute, and destroy them. Process management is based on
the following attributes:

" Processes are modeled in the same way as other types of objects. All processes
have UIDs used to address them, and all the processes on a host have a process
manager that services requests invoked on them. This yields a uniform approach
to active and passive components of an application. Conformity to the object
model also provides extensibility, the ability to create new types from existing
ones. As a result, a simple file type may be used to build more specialized type
implementations, such as fast or replicated files.

" Process creation is flexible to support a variety of different uses. A process can
be automatically initiated by SDOS or selectively in response to specific requests.
Manager processes are automatically initiated when a host is booted or to service
an unhandled invocation request. Any type of process may be selectively initiated
by a process with appropriate privilege requesting to create one.

" Access authorization is based on the privileges of processes. Processes have iden-
tities bound to them which are used to authorize their actions as clients to access
other objects (see section 3.6.4.1).

" Processes may be transient or perpetual. A process has access to stable storage to
save its state and allow its perpetual execution despite failures.

" Processes may be initiated when the system boots, when services are initiated,
when users log into the system, or when processes are spawned to accomplish a
specific task in an application.

3.1.2.4 Interprocess Communication (IPC)

The SDOS interprocess communication facility is responsible for reliably and securely
relaying messages between processes located anywhere in the system. The message
switch located on each host is responsible for message routing and delivery.

IPC in SDOS is based on the following principles:

" A client/server protocol is used based on addressing objects for operation invoca-
tions.

" At the highest layer, message delivery is directed on the basis of a host-independent
object identifier. Object identifiers are mapped to processes on specific hosts using
a facility to locate objects by the message switch. Addressing is useful for opera-
tions on a collections of objects of a type or for operations on "unknown" objects
(e.g., to create an object).

96 CHAPTER 3. DESIGN

" At the highest layer of communication, interhost and intrahost communication are
treated uniformly by basing addressing on objects and types rather than hosts.

* Replicated objects are supported. By allowing the optional designation of the
destination host in addition to the object identifier when addressing a message, a
client can route a message either to any copy of an object or to a specific copy.

" An initial SDOS implementation should be based on the DoD standard (nonse-
cure) internet (IP) and terminal transmission (TCP) protocols to facilitate speedy
prototyping.

3.1.2.5 Secure Information Transfer

The SDOS security policy models all information flow as instances of the send-message
operation issued by entities. Determining whether information flow is secure in the
system will involve establishing a mapping between entities in the policy and system
components in an implementation, and identifying all instances of component inter-
actions that are send-message operations. There is not a one to one correspondence
between the policy entities and objects: each object is an entity, but many entities are
not implemented as objects (e.g., the IPC facility).

The asymmetry of objects and entities derives from the difference in how objects and
entities are defined. Objects are used to structure a system, and are defined at a level
in which they are manipulated by manager processes and addressed by client processes.
The decision to define an object is a pragmatic one based on how to organize a collection
of software, and involves consideration of software performance and complexity.

In contrast to an object, an entity is defined as the components of a system which
information flows into and out of, regardless at the level of their implementation. Entities
are used to model an implementation. As a result, although entities all have the same
set of attributes, in practice they may be implemented quite differently. For example,
all entities have security labels. All entities that are objects have security labels that
are explicitly represented in the system. Other entities, particularly components of the
operating system, may have labels with no explicit representation in the implementation.

Ensuring secure communication flow in SDOS is based on a multi-level security
policy. The SDOS implementation will involve the use of several different mechanisms
that together are modeled in the security policy as the secure send-message operation.
Examples of these mechanisms are the interprocess communication facility, the object
database facility, and the communications subsystem.

Secure information flow in SDOS is based on the following properties:

* Every object has a security label. The security label can include levels for sensi-
tivity and integrity, need-to-know categories, and a security attribute (single-level
or multilevel secure). Labels are set by the System Manager and System Certifier.

3.1. THE FUNCTIONAL DESCRIPTION 97

Every IPC message has a security label, set by the message sender, that is vali-
dated by the IPC mechanism prior to delivery. A message's label is invalid if it
is incompatible with the label of its creator (as defined by the security policy).
Messages with invalid labels are rejected. The labels of messages originating from
a process are validated by the IPC mechanism; the labels of messages originating
from the IPC mechanism are assumed to be accurate.

" Every IPC message is forwarded toward its destination by the IPC mechanism
only if the forwarder can ascertain that the message can be forwarded securely to
the next component in the message's path. A message is forwarded securely if the
message's label is coasistent with the receiving component's label. Examples of
message forwarding is between hosts and from the message switch to a process.

" Object labels are separated from objects and their managers. A security database
maintained on each host contains the label of every object located on the host
and every host in the system. The message switch uses the security database to
validate message labels and deliver them securely. The concentration of labels
in a single repository on each host facilitates high performance message delivery.
Labels are referenced by addressing the host they are located on rather than the
object associated with the label.

3.1.2.6 Discretionary Access Control

The purpose of a discretionary access control mechanism is to restrict accesses to objects
based on the identity of the accessors and the way they are attempting the access. This
section examines the general properties and functions proposed for the SDOS discre-
tionary access control mechanism.

The components involved in discretionary access control are:

" Clients: active user or system components that have specific identities and that
request access to resources. A client is commonly implemented as a process.

" Resources: objects, which are instances of object types; an object's type defines
the operations through which object's of the type may be accessed.

" Object managers: perform operations on objects they manage that are requested
by clients, and authorize client's privilege to request the access.

Discretionary access controls prevent unauthorized clients from accessing objects.
These controls are provided through two mechanisms: client authentication, where a
client is given an identity for access control purposes; and access authorization, where a
client's request to access an object is granted or denied. Access is granted if the client
has the privilege to access the object.

98 CHAPTER 3. DESIGN

3.1.2.6.1 Properties of SDOS Access Control The discretionary mechanisms
supported by SDOS will have the following properties:

" Unique client identities: Each user and each system service has a unique iden-
tity that is known throughout the system.

" Single client log-ins: Users log into any host in the system once per session and
provide their user name and password for authentication. Passwords are protected
in the system by a one-way transformation and are stored in encrypted form. The
transformation is applied to the password supplied by a user logging into the
system. If the transformed value matches the stored value then authentication is
successful; otherwise, the user is not permitted to continue.

" Specificity in client identification: Client identities will allow clients to be
distinguished based on:

- Unique identifiers at the granularity of user or service. This will allow privi-
leges to be given to individual users or services.

- Association of the client with an organization of clients. This will allow
privileges to be given to groups of clients based on their participation in a
group or organization (e.g., a department).

- The activity of the client. This will allow privileges to be given to clients
based on a role or responsibility they have in a large, complex application
(e.g., data entry, monitoring, and operational control).

" Host independence: Access control is performed in a host-independent fashion.
The location of the client is not considered in the decision to grant access to an
object.

* Type-specific privileges: Access control privileges may be defined indepen-
dently for each type. Access to an object is limited to the set of operations defined
by the object's type. Privileges are based on the abstract operations defined by
each type.

" Uniformity across types: Although privileges are defined in a type-independent
fashion, the activities performed by users span many different types. By defining
the roles of clients, there is a uniform basis for identifying the activities of clients
across different types.

" Authorized nested invocations: Clients may act as proxies for other clients.
This will allow one client to act on another's behalf. Any client may transfer a
proxy identity as part of an invocation. This permits the manager handling the
invocation to act on the client's behalf in invoking other operations.

" Intermodule connection control: A manager receiving an invocation is always
able to distinguish the client's actual identity from the proxy identity it passes. An
object type can be designed to only allow specific software (e.g., another manager)

3.1. THE FUNCTIONAL DESCRIPTION 99

to invoke certain critical operations on them. However, the client invoking the
critical operation is permitted to invoke it on behalf of other users.

e Direct operations: Certain critical operations should only be invocable by a
human user through a trusted interface. Such direct operations will be protected
by a mechanism which is able to distinguish clients that are users fro L, ,-ose that
are not.

o Nondiscretionary controls: Access privileges for each type will be divided into
discretionary and nondiscretionary parts. The nondiscretionary privileges may
only be assigned by the System Controller. The discretionary privileges may be
assigned by any client in the controlling group of the type, which is set by the
System Controller.

* Automated access control list initialization: An access control list for a
newly created object is automatically initialized based on properties of the object's
creator and the creator of the type.

3.1.2.6.2 Discretionary Access Control Functions Access authentication and
access authorization are the two functions that comprise discretionary access control.
Access authentication is the interaction between a terminal interface process (TIP), the
Authentication Manager (AM), and a Process Manager for the TIP.

" Terminal interface process: responsible for (iteratively) accepting the user
name and password of a human user, relaying this information to the Authenti-
cation Manager, returning an indication of the success of the authentication (and
possibly reprompting for name and password if the login fails), and executing the
appropriate user interface software for the particular user.

" Authentication Manager: The Authentication Manager accepts or rejects the
authentication attempt by searching for the user name and password supplied by
the TIP in its password database. If this check succeeds then the Authentication
Manager sets the bindings, or process identity, of the TIP to correspond to the
identity associated with the user name. This binding is set by interacting with the
Process Manager for the TIP.

Process Manager: The Process Manager is responsible for maintaining the pro-
cess bindings of the processes it manages. It accepts requests exclusively from
Authentication Managers to assign the bindings of processes.

Access authorization occurs when a process invokes an operation on an object. The
purpose of the authorization is to determine if the process has the privilege to access
the object with the operation. Authorization involves the comparison of the identity,
or process bindings, of the invoking process against its privileges, as designated by an
access control list, to use the object. The following describes the role of each component
involved in access authorization:

. .. . -- - ,,,m~n~mn lum ren m n nnnBum n • I

100 CHAPTER 3. DESIGN

" Client process: requests access to an object by invoking an operation on the
object.

" Object manager: receives the access request, obtains the process bindings for
the client process, and performs the access authorization. Client process bindings
are obtained from the Process Manager of the client process. The success of
authentication depends upon the privileges defined by the type of the object, the
particular privileges granted to the client process for the object, and the identity
of the client.

" Process Manager: responds to requests by object managers to obtain process
bindings for processes it managers.

3.1.2.7 Symbolic Naming

Symbolic naming allows resources in the system to be easily identified by users. The

Catalog Manager is the service responsible for providing the symbolic naming capability.
This service maintains a set of user-defined symbolic names for objects that it can
translate into system-level unique object identifiers (UID), which are in term used to
locate and access objects. Objects having symbolic names are said to be cataloged in
the directory. Since the sole purpose of symbolic naming is to make a system easier
to use for the human user, the catalog service is a user interface facility. The SDOS
symbolic naming facility is based on the following principles:

" The symbolic name space is global and host-transparent. Any object in the system
can be cataloged by the service, regardless of its location or any other property
of the object. The catalog service is accessible from anywhere in the system as a
by-product of SDOS object-based IPC.

* The symbolic name space is type independent. The name of any type of object
may be cataloged by the catalog service.

" Symbolic names all have the same syntactic form. This means that symbolic names
can be manipulated without concern for the type or location of objects they name.

" The selection of every symbolic name is under the control of its creator. No con-
straints are placed on naming because of the concern for a clear, flexible user

interface. User-controlled naming allows symbolic names to be a conduit for com-
municating sensitive information. Information leakage is avoided by placing secu-
rity labels on cataloged information, and forcing access to the catalog to conform
to the security policy information flow rules.

" Symbolic names are loosely tied to UIDs. One object may be cataloged under
several different symbolic names to allow different users to select their own names
independent. Objects are not required to be cataloged; some objects are never di-
rectly named by users or are placed in private name spaces using separate services.
In contrast to symbolic naming, each object only has a single UID.

3.1. THE FUNCTIONAL DESCRIPTION 101

" The symbolic name space is structured. The enormous number of objects that
can populate a distribute system necessitate the organization of symbolic names
into a structure that allows users to quickly find names. The two most impor-
tant requirements are to be able to group names of related objects, and represent
simple relationships between different groups. A hierarchical name space has been
adopted in SDOS, forming a large tree. Inner nodes of the tree are directories,
objects managed by the Catalog Manager that contain a list of symbolic names.
Leaf nodes are the catalog objects.

" The catalog is dispersed among many Catalog Managers on different hosts. Dis-
persion allows the catalog to scale in a way that avoids performance and resource
bottlenecks, but can cause catalog lookups to span several hosts. A multiple host
lookup facility will be supported by the Catalog Manager.

" The symbolic name space is replicated to ensure availability and improve perfor-
mance. Catalog copies are kept consistent through a replication protocol imple-
mented within each Catalog Manager that distributes catalog updates.

3.1.2.8 User Interfaces

The purpose of the user interface is to provide human users with an easy to understand,
reliable method of interacting with the SDOS system. The user interface is responsible
for interpreting user commands, initiating the activities that perform the requested
tasks, and returning the results accurately to the user.

User interfaces have increased significantly in sophistication with the proliferation
of graphics capabilities on workstations and personal computers. This growth has nat-
urally been accompanied by an enormous increase in the complexity of user interface
implementations. A key property of a user interface in a secure system is that it inter-
pret user commands reliably and securely, particularly for commands having a critical
impact on the security of the system, and present the corresponding results accurately.
Demonstrating that these properties are satisfied by a complex user interface is extremely
difficult.

The approach adopted with SDOS is to provide three types of user interface:

" Basic Interface
Presents the actual low-level model of objects that make up the system to the
user. This interface is intended to be very simple and is used for security critical
commands where reliability is essential. Commands to this interface correspond
to (sets of) operation invocations on objects. The Basic Interface constitutes a
trusted path to system components.

" Extended Interfaces
A more standard set of user interfaces, implemented graphically or textually, that
allows users to issue more complex commands than provided in the Basic Interface.

102 CHAPTER 3. DESIGN

These interface do not map commands into operations on objects, but may present
the object-oriented flavor of the system to the user.

Special Purpose Interfaces
Examples of special purpose interfaces are application interfaces and subsystem
interfaces, such as to the Configuration, Monitoring, and Control System. These
interfaces are developed independently with no attempt at uniformity. Diverse
special purpose interfaces are useful for allowing access to applications in the way
best-suited for their use.

The SDOS approach to user interfaces is based on the following principles:

" Validation of the correct performance of the Basic Interface is essential for the
control of security-critical aspects of the system, such as the assignment of security
labels, modification of access privileges, and selection of the system parameters
designated in the security policy. Validation is made feasible by the Basic Interface
acting as a simple interpreter of object-based operations.

" Security-critical commands can only be initiated from within the Basic Interface.
It is not only necessary to ensure that such important commands are interpreted
correctly by the Basic Interface, but also that these commands cannot be issued
through another interface that may incorrectly interpret them. This is achieved
in conjunction with access control by specially designating processes that execute
the Basic Interface.

" The Basic and Extended Interfaces are extensible to allow the growth of the inter-
face to parallel the growth of the system. As new types are created, the interface
should allow users to interact with those types in an appropriate way. The Basic
Interface can be table driven by the set of types in the system. The Extended Inter-
faces will be modularized by command and extended on a command by command
basis.

" The Basic and Extended Interfaces allow the execution of programs that provide
Special Purpose Interfaces to the user, and permits the user to interact with these
interfaces. This feature is necessary to allow Special Purpose Interfaces to tem-
porarily replace one of the standard system interfaces.

" A single command to the Basic Interface can initiate a sequence of operations on
objects. This makes it possible to build more complex commands from simple ones
and thereby make the interface easier to use.

" The Extended Interfaces allow the user to execute several commands simultane-
ously, including commands that initiate the execution of other programs. The user
may switch between different execution threads to allow concurrent activities.

3.1. THE FUNCTIONAL DESCRIPTION 103

3.1.2.9 Controlled Software Development

The development of trustworthy software that can execute in a secure system and, ide-
ally, safely maintain the separation of information having different sensitivity levels, is
a difficult task involving many stages. These stages include specification, design, im-
plementation, integration, and validation. Software development is further complicated
in SDOS by its execution in a distributed environment. The purpose of the Controlled
Software Development System is to provide tools to make the task of developing software
simpler while establishing high levels of assurance that software conforms to requirements
for reliability and security.

Controlled software development in SDOS is based on the following principles:

" Modules of software are typed in accordance with their stage of development and
information contained in the modules. Examples of modules include specification
modules, source code, object code, library routines, executable modules, building
commands. Typing modules defines strict interfaces to each module in accordance
with how the module is used.

" Software modules can only be manipulated by tools specific to each type. It is
impossible for a developer to arbitrarily modify a particular module. Rather, use
of a module must correspond to the module's type. For example, object code
modules can be only created, linked, or destroyed.

" Software can only progress into a new phase when the component modules have
been certified to pass a criteria specifically established for the new phase. For ex-
ample, a typical application is built from many different modules. The application
cannot be fielded until each module has been certified to have been successfully
validated. Validation may include inspection, testing, and formal validation. Cer-
tification guarantees that each module must meet specific conditions and that the
definition of an application (e.g., the modules that comprise it) is consistent across
each phase of development.

* All modifications to modules are audited, and version control is provided to ensure
consistency between related modules in different stages. Auditing provides a means
of reviewing the use of modules, while version control is useful for archiving and
reconstructing previous versions and detecting incompatibilities between related
modules. For example, a change to a specification can invalidate an executable
module.

" Specifications that can be interpreted by development tools enhance software val-
idation. Specification can provide a means of simply stating the properties of
software. When the specifications are machine-readable, they can be used in two
ways: to automatically generate code that guarantees the implementation is con-
sistent with the specification; and to validate the consistency of the specification
with the specification of other modules, thereby enforcing a system-wide policy for
software.

104 CHAPTER 3. DESIGN

o Software developers should be shielded from the complexity of the distributed sys-
tem. One of our goals is to concentrate the software developer's energies on the
development of the application, minimizing the impact of its execution in a more
complex environment. A second goal is to provide support for those activities com-
monly performed in virtually all applications. Examples of methods of reducing
the complexity of distributed application development in SDOS include:

- Automated data type translation. Different hosts support different represen-
tations of data; for example, the representations of an integer on a Vax, C/70,
and Sun are all different. Interprocess communication in such a heterogeneous
environment in a host transparent fashion becomes extremely difficult when
an application developer must be concerned with the destination of every
message for data translation purposes. SDOS avoids this complexity by in-
troducing canonical data type representations for data transferred between
processes and automatically generating code to perform the translations.

- Simplified model of concurrent execution. Processes in a distributed system
execute in parallel, and parallel activities are difficult to understand. Routines
are provided to handle the receipt of multiple messages and schedule their
servicing, and to provide a simple subroutine-style interface to independently
scheduled application routines.

3.1.2.10 Configuration, Monitoring and Control (CMC)

System operation entails many functions:

" Configuration: initialization of system parameters, movement of software be-
tween hosts, installation of software updates;

" Monitoring: inspection of the status of executing services and applications, in-
cluding message flow, performance, and internal resource usage;

" Control: the initiation and termination of system services and the adjustment
of the system as it executes in response to changes in load, resource usage, and
administrative requirements.

System operation is made easier in SDOS than in other systems because of the use of
objects as a structuring method. Configuration involves the placement of objects and
object managers and the assignment of initial system parameters in the basic set of
services (process management, interprocess communication, and authentication). The
system is monitoring by viewing the status of object managers and their interactions.
System operation involves interacting with individual managers. The CMC system is
driven by an SDOS system console, used to display information to the user and service
as an access point for system control.

The configuration, monitoring, and control facility in SDOS is based on the following
principles:

3.2. ASSURED COS SUPPORT 105

" The facility can be applied uniformly to system services and application compo-
nents. The organization of software based on objects makes it possible to interact
with all object managers regardless of the function or level in the system. This
uniformity greatly simplifies the CMC system.

" The status of events are collected both actively and passively in correspondence
with the properties of the events. Active collection involves the CMC system ini-
tiating an action to collect information, and may be manually directed, periodic
(e.g., polling), or irregular (e.g., in response to some other event). Passive collec-
tion corresponds to collection initiated by a component, such as the occurrence
of an exceptional event. Two modes of collection allow the CMC system to ini-
tiate the collection of status information as well as be alerted to unexpected or
emergency events.

" Logging is supported at various levels of detail. Logging can be performed within
software components through the use of logging mechanisms available to software
developers. Intracomponent logging is useful for highly detailed records of activity.
External logging is provided by the system to monitor high-level events, such as
the operations invoked on a manager. All logging may be activated or suppressed
under CMC control.

" Monitoring is supported at various levels of detail. Component-based monitoring
is concerned with how an individual manager performs. Service-based monitoring
is concerned with how a service, possibly implemented by many different managers,
performs. Host-based monitoring is concerned with monitoring the collection of
services on a host. Monitoring at different levels of detail corresponds to the
different levels of control used to operate the system.

3.2 Assured COS Support

The basic functions needed to support SDOS operations on a particular host, such as
file system services and memory management, will be provided by various constituent
operating systems (COSs). As in Cronus, each COS will be local to a particular host,
and there may be several heterogeneous kinds of COS supporting SDOS.

Certain aspects of COS operation must be known to be correct in order to have
assurance that SDOS enforces its security policy. The COS must provide:

" assured process separation - the ability to prevent direct inter-process communi-
cation that does not involve COS access control;

" non-interference with process operation - SDOS processes responsible for security
must not be tampered with;

" stable storage - data needed for enforcing security, such as user authentication
data, must be stored in a fault-tolerant manner.

106 CHAPTER 3. DESIGN

Without these basic features of each COS, it may always be possible to destroy or bypass
any security features of SDOS.

The COS may additionally assure a more complicated policy. For example, the
COS may be a multi-level secure OS. We have favored MLS OSs which meet the DoD
security evaluation criteria [DoD Criteria 85], since their security policies are more likely
to support SDOS', and since they possess a high degree of assurance that their policies
are met.

Given an MLS COS, the most important design question is: how can the SDOS
design best use the COS functionality? This question of COS integration is addressed
in the following sections.

3.2.1 Alternative Approaches to Integration

There are two basic approaches to building SDOS on top of an arbitrary MLS COS.

1. Treat SDOS as an application supported by the COS.

2. Treat SDOS as an extension of the COS kernel.

3.2.1.1 Approach I

In the first approach, SDOS is entirely responsible for enforcing multi-level security.
Any MLS features the COS might possess are ignored. This approach has conceptual
simplicity as an advantage, since there is no possibility that the SDOS security policy
and the COS security policy can conflict.

Each SDOS process, both those that are assured to meet some policy and those that
are not, will be run as a separate COS process. In particular, the multi-level SDOS
kernel will execute as a single COS process. The COS will control IPC in the following
manner: IPC will be possible in both directions between two SDOS processes if and
only if one of those processes is the SDOS kernel. Thus, all SDOS communication will
be forced to pass through the kernel, and hence through the SDOS message switch. The
message switch and MLS managers will then enforce the SDOS policy as described in
section 2. .

If the COS is a multi-level secure OS, there will be two sets of security labels active:
the COS labels and the SDOS labels. The MLS capability of the COS will be effectively
disabled by assigning the COS label of every SDOS process to be some fixed level X.
Then MLS access control within the COS will never fail due to mandatory security, since
all COS levels are equal.

This approach has the effect of decoupling the SDOS design from the design of the
COS. Not only will problems due to incompatibilities of security policies be minimized,
but so will the effort needed to port the SDOS design from one COS to another. On

3.2. ASSURED COS SUPPORT 107

the other hand, with only slight coupling between SDOS and each COS, it is unlikely
that efficiencies incorporated into the design of the COS can be exploited. Some extra
inefficiency may even be added. For example, whatever processing power the COS
expends on checking mandatory security labels will be wasted. All checks will continue
to be performed, even though they must always succeed (since all levels are X).

It is essential to this approach to be able to set up the access controls on IPC as
described above. The most likely method is to set up these controls using the COS
discretionary access control mechanism and then make the COS DAC unalterable.

Note that under this approach., MLS software designed to run under the COS cannot
interact directly with SDOS at levels other than X, unless it is first converted to the
SDOS system of labels. This will be a significant drawback, especially if the COS has
pre-existing MLS networking software.

3.2.1.2 Approach II

The alternative approach offers tighter coupling between SDOS and its supporting COS.
In this approach, the COS is assumed to be an MLS OS. SDOS uses the MLS features
of the COS to enforce mandatory security.

As in Approach I, each SDOS process is implemented as a COS process. The COS
security labels are taken to be equivalent to the SDOS security labels. Direct IPC
between processes is constrained by COS access controls based on the COS security
labels. Thus, it is possible for processes to communicate directly without the intervention
of the SDOS message switch (although they sacrifice the location transparency provided
by SDOS in this case). Also, non-SDOS processes may communicate directly with SDOS
processes, allowing the possibility that MLS applications which were written specifically
for the COS can be integrated into the SDOS environment. This is the heterogeneous
integration which is one of the prime goals of the Cronus DOS, transferred here to SDOS.

Implementing Approach I1 will be more complicated than Approach I, as there are
a several problems which must be overcome.

o SDOS must use the COS system of security labels. This will be a problem, for
example, if there are not enough bits in each COS level to record the information
in an SDOS level. The number of bits in SDOS levels has not been specified in this
report, but it must be sufficient to include both security and integrity classifications
and categories. The COS labels must also include the possibility that an entity is
multi-level, and possibly to allow some sets of levels to be authorized for multi-level
entities.

By not specifying the structure of its labels in complete detail, the SDOS scheme
remains very general. It can probably be restricted to conform to whatever labeling
scheme is used on most MLS COSs. There is the risk, however, that in an SDOS
supported by heterogeneous COSs, that a common denominator would need to be

108 CHAPTER 3. DESIGN

found for the labeling on all the different COSs, and that it would be unnecessarily
constraining.

Not only must the COS labels distinguish between multi-level and single-level
entities, but the mechanism used to create new MLS entities must be flexible and
available for use by the SDOS kernel. SDOS must have the capability to start
new MLS managers, which will require that multi-level COS processes be created
interactively. An inflexible COS design, allowing only a fixed set of multi-level
processes, known in advance, would not be able to meet this requirement. Nor
would a COS design in which MLS processes could be started only by system
administrators.

" This approach uses the COS system of labels, and it therefore uses a COS "security
database". In order that the SDOS kernel be able to make access control decisions
based on labels, it must be able to read this COS "security database". Therefore,
COS operations to permit this must exist.

The SDOS security database contains information other than labels, replication
counts, for instance. For this approach, the SDOS design must partition the SDB
into a COS part and an SDOS part.

" Other aspects of the COS and SDOS security policies may be incompatible. In
particular, the SDOS configuration policy, which defines the unchangeable system
security preconfiguration (see 2.1.3.4), may bear no relation to the policy of the
COS. For example, the SDOS security preconfiguration may require that labels be
non-modifiable, but this cannot be enforced in Approach II unless it is enforced
by the COS.

The configuration policy also requires SDOS to keep the security configuration
consistent across the network. The COS, acting purely locally, will meet no such
policy. Therefore, COS operations must exist to support SDOS in implementing
this consistency.

3.2.2 Examples of SDOS Integration with an MLS COS

As examples of how the above integration approaches might be implemented given the
current COS technology, the following sections describe the considerations to be taken
into account when hosting SDOS on GEMSOS and KeyKOS.

The GEMSOS secure operating system is a product of Gemini Computers of Carmel,
California. It is an existing product which is designed to meet the NCSC class B3
evaluation criteria. It runs on the 80286 processor, and exploits that architecture's
division of privilege into layers, called rings.

The KeyKOS operating system is an existing product of Key Logic, Inc., of Santa
Clara, CA. It defines an object-oriented structure of resources in which access control is
capability-based. It currently runs on IBM 370 architecture computers.

3.2. ASSURED COS SUPPORT 109

3.2.2.1 Hosting SDOS on GEMSOS

Processes in GEMSOS will ordinarily be able to communicate with each other by using
shared memory structures called segments, event counts, and sequencers. Segments are
blocks of memory which can be read and written once visible in a process' address
space. Associated with each segment is an event count and a sequencer. These are
registers which allow secure synchronization using the scheme of Reed and Kanodia
[Reed and Kanodia 791. Each association of a segment, event count, and sequencer is
assigned a security level. A process may use the association for communication once
the GEMSOS security kernel has successfully mediated its request for access. Two
processes with access to the same association can communicate directly without further
intervention by the kernel.

The GEMSOS ring 0 (the ring with greatest privilege) contains all software which is
directly involved in enforcing a mandatory policy based on levels. This includes:

* memory management, including mediation to decide whether particular segments,
event counters, and sequencers will be made accessible to particular processes;

* any multi-level device-drivers. Such drivers include disk drivers which ensure multi-
level access to stable storage on disk, as well as software to run transport-layer
protocols on multi-level network links.

The GEMSOS ring 1 contains ancillary software for MLS, such as authentication rou-
tines, and also software to enforce discretionary access controls.

We expect that either Approach I or Approach II can be made to work with GEM-
SOS. Bidirectional IPC is possible for a pair of processes at the same GEMSOS level by
creating a pair of segments, with associated event counts. For Approach I, the ability
of a process other than the SDOS kernel to create new shared segments must be elimi-
nated. For Approach II, the SDOS kernel and other MLS managers must be declared to
be multi-level GEMSOS processes. GEMSOS uses security labels which include a range
of levels for multi-level entities. This will be sufficient if SDOS level sets are taken to
be ranges also. In either case, the SDOS kernel, MLS managers, and trusted interface
processes can be made to execute in ring 1.

3.2.2.2 Hosting SDOS on KeyKOS

The KeyKOS kernel defines a set of objects. These objects may contain both programs
and data. Communication between objects is via invocation of abstract operations, and
this communication is uniform whether the objects are processes or data, and whether
kept in volatile memory or on stable storage. The distinction between objects on stable
storage and objects in volatile memory is hidden, with the system providing periodic
checkpointing services which aid restart/recovery.

110 CHAPTER 3. DESIGN

Use of an abstract operation requires possession of a capability for that operation.
The capabilities, called keys, are maintained in software by the KeyKOS kernel. Keys
can be used by objects but cannot be manipulated directly, and hence cannot be forged.

KeyKOS presents a very minimal functional interface, emphasizing efficiency. It is
claimed that services which are missing from this minimal structure, such as multi-
level security and auditing, can easily be added. The approach recommended in the
KeyKOS documentation is to divide the keys into disjoint sets, each set possessed only
by objects at a single level and authorizing operations only on objects at that level. This
completely isolates each security level. To support vital operations, such as "read down",
the documentation recommends creating multi-level "filters", which allow information
to flow between levels, but only securely. Such filters have apparently not been built for
the KeyKOS environment.

The collection of the SDOS kernel and MLS managers is, in fact, such a filter.
Therefore, it is possible to use Approach II above, in which each single-level application
written for KeyKOS is given only keys for operations on objects at some particular level.
Any multi-level application will additionally require keys for communication with the
SDOS kernel, which possesses capabilities for all levels. Thus, indirect communication
across levels is possible.

It is also possible to use Approach I above, in which an initial allocation of keys
permits each KeyKOS object which is not the SDOS kernel to communicate only with
the object representing the SDOS kernel. Then multi-level security can be enforced
by the SDOS design. This allocation of keys-is simpler, but more restrictive, since it
prevents integration of KeyKOS applications into SDOS. Approach II should be favored
instead.

3.3 Communications Layering

Even though the DoD protocols are used to support SDOS networking needs, general
discussions of telecommunications networking are centered around the architecture of
the Reference Model for Open Systems Interconnection (or OSI Reference Model). This
model was developed for distributed information systems and the functionality needed
to communicate between heterogeneous hosts. After being approved by the Interna-
tional Organization for Standardization (ISO) and by the International Telephone and
Telegraph Consultative Committee (CCITT), OSI became a standard in 1983. The next
few sections will examine OSI and then relate it to the protocols used in SDOS.

3.3.1 OSI Reference Model

A succession of functions is involved in a communication. The technique of layering
employed by OSI is to organize those functions in a logical order. OSI provides the
framework for the definition of standardized procedures for information exchange. These

3.3. COMM UNICATIONS LAIYERING 11]

CORRESPONDENT
n-USER n-USER

SERVICE PROVIDED / LAYER

INTERFACE

PROTOCOL PEER

ENTITY n-LAYER PROTOCOLENTITY

ZINTERFACE

n-1 LAYER

Figure 3.1: Layer Service Hierarchy

are the protocols developed at each layer. OSI is also technology independent-the stan-
dardized procedures are independent of the hardware and software chosen to implement
them. Each protocol layer (layer "n") provides a set of services (functions) to its user in
the next higher layer (layer 'n-") by building upon the services provided to it by the
next lower layer (layer 'n-1"). Layers are defined with similar services grouped together
and interactions across layer boundaries minimized. The grouping of services within a
layer is called an entity. In addition. layers are defined so that different protocols may
be used within a layer without affecting the layer service definition. This is sometimes
called layer independence. Layer independence means that the implementation details
of a layer are considered hidden from its users. This makes it possible, for example, for
the same transport protocol to be used on packet-switched as well as circuit-switched
networks.

Entities in the same layer communicate with each other using peer protocols. Figure
3.1 shows the abstraction of the idea of one layer building on another to provide services
to a user. More specifically, the figure illustrates the idea of service hierarchy and shows
the relationship of two correspondent n-layer users and their associated n-layer peer
protocol entities.

CHAPTER 3. DESIGN

Dama

SHeader Data Applicafion Layer

Header Dam Presentation Layer

Header mD, Session Laver

F Header Dam Transport Layer

Header Dam Network Layer

Heade- Dam Data Link Laver

Bits Physical Layer

Figure 3.2: PDU Construction

Information transfer between peer entities takes place with protocol data units
(PDUs) composed of control information and data; and information transfer between
adjacent protocol layers takes place with service data units (SDUs). At each layer a

protocol header conveying the peer protocol information for that layer is added to the
SDU from the "n-l" layer. This in turn, becomes the SDU to the "n-l" layer. The ap-
pending of protocol control information onto the data units follows layer by layer as the
outgoing PDU is constructed. At the recipient end system, each layer "n" in turn looks
at its header, performs the required function and passes the data unit minus header 'n'
to the "n-i" layer. Figure 3.2 shows the construction of the outgoing PDU.

Abstract service primitives are the interactions that take place at a layer boundary
between the provider of a layer's services (service provider) and the user of a layer's

services (service user). There are four types of service primitives: requests, indications,
responses, and confirmations. A service user invokes a service by issuing a request. A

service provider gives an event or condition to the service user by issuing an indication.
A service user responds to the event or condition by issuing a response. Finally, the
service provider issues a confirmation to the service user to give the result of the service
request. See Figure 3.3.

Figure 3.4 shows the OSI Reference Model. Seven protocol layers are defined- group-
ing logically related services together. The upper three layers provide services in direct
support of the application process, while the lower three layers are concerned with the

transmission of the information between the end users of the communication. The Trans-
port Layer is the essential link between these two groups of services: it Drovides end-
to-end integrity of the communication, ensuring that the appropriate quality of service

from the lower three layers meets the requirements of the upper three layers.

1. Physical Layer. The Physical Layer standardizes the physical medium and the
signalling techniques used across that medium.

2. Data Link Layer. This layer synchronizes the transfer of information over the

physical link.

3.3. COMMUNICATIONS LAYERING 113

Local Se rice User Re-note Service User

Reque:: Confir .ion Re.-ponse Indica:'0n

Local SCFrvc- Remo=e Se.ice
Provicer P.:Ovide |

lnaic..lon L[[

Figure 3.3: Confirmed OSI Service

End User Pecr Protocol End User

Application Layer - , Application Layer

Presentation Layer - Presentation Layer

Session Laiyer I i Session Layer

Transport Layer I 0 Transport Layer

Network Layer . -0- Network Laver

Data Link Laver - P Data Link Layer

Physical Layer I Physical Layer

Physical Medium

Figure 3.4: OSI Reference Model

114 CHAPTER 3. DESIGN

3. Network Layer. This layer provides the switching and routing functions needed
to establish, maintain, and terminate switched connections and to transfer data
between the communicating end-users. It is the lowest layer prov.ding a host to
host service.

4. Transport Layer. This layer provides transmission control of the information in-
terchange.

5. Session Layer. This layer maintains the conversation between cooperating users.

6. Presentation Layer. The representation of the data is managed at this level.

7. Application Layer. The Application Layer provides the user direct access to the
OSI environment and to the distributed information services to support the user
and to manage the communication (e.g., distributed transaction management, ter-
minal emulation, file transfer, and mail transfer).

3.3.2 SDOS Protocol Hierarchy

Figure (3.5) relates SDOS to OSI. The upper three layers, Application Layer, Presenta-
tion Layer, and Session Layer services are provided by the SDOS-specific Layers of SDOS.
For SDOS the Application Layer comprises client software and object managers. The
Presentation Layer in SDOS corresponds to the canonical datatype representation layer
of Cronus, where Application Layer messages are encoded into machine independent
representation. Session Layer services are provided by the Inter- process Communica-
tion (IPC) Layer of SDOS where the Message Switch, Locator, and Process Manager
manage the organized and synchronized exchange of messages (see Sections 3.5 and 3.6
for a complete discussion of these components of the SDOS kernel).

The lower four layers, the communications substrate, correspond to the U.S. Depart-
ment of Defense (DoD) Internet Protocol Suite (specifically TCP, UDP and IP) over
Ethernets and the ARPANET. The Transport Layer services are provided by the Trans-
mission Control Protocol (TCP) when reliable message transport is required or by the
User Datagrarn Protocol (UDP) when short, unreliable message transport is appropriate.
The Network Layer services are provided by the Internet protocol (IP) along with pro-
tocols specific to the communications subnet employed. And the Data Link Layer and
Physical Layer services within the host interface to an Ethernet or the ARPANET. The
Internet Protocol Suite was originally developed for the ARPANET and then adopted
as standards by the DoD.

3.4 Network Security

Network security complements the security mechanisms implemented above the commu-
nications substrate within individual SDOS hosts (SDOS-specific security) by protecting

3A4. NETWORK SECURITY 115

A Appim~ion

SD ()S-SI'E CI FIC
Presentatioin

L A Y E R SS essio n

Tranpor: UD Tr~nspr::TCP Connect ion-onented
Tranport :UDP Tansort:TCP Security Services

:ii L
IIntegrated Here

Network: Host-to-Host Encryption

Internet Sublaver I ntegrated Here

CONINUN'ICATIONS

SUBSTRATE

Network:

Subnet Sublayer

Data Link

Phvsical Trafficflow Enrcrypton

[P- Intecrted Here

Figure 3.5: SDOS and the OSI Reference Model

116 CHAPTER 3. DESIGN

the communication channels connecting the hosts of the distributed operating system.
Adding security functions to the communication channels guards against passive and ac-
tive wire-tapping and (optionally) against the unauthorized disclosure of message traffic
patterns. SDOS-specific security is also enhanced because the data transfers within
the distributed operating system are protected. Adding security functions to the data
transfers protects message content from unauthorized disclosure, ensures that messages
arrive intact, and verifies the identities of the communicating systems.

Applying security functions to the communications substrate serves to segregate
hosts of different trust or of different accreditation levels. Connections and messages
between heterogeneous hosts can be audited and interaction limited.

For this work we looked at:

" ISO 7498, The Basic Reference Model for Open Systems Interconnection,

" ISO 7498 Part 2, Security Architecture, and

" Trusted Network Interpretation of the Trusted Computer Systems Evaluation Cri-
teria NCSC TNI 87].

There are two main parts to this discussion. The first two sections are tutorial;
they detail security services and the security mechanisms to apply those services to the
network model. The third section applies the knowledge of the tutorials to SDOS.

3.4.1 Security Services and Mechanisms

This section considers security services and the security mechanisms with which to pro-
vide those services. The problem in SDOS is which of these services are needed for SDOS
and where to apply them (at what layer of OSI). Security services are functional charac-
teristics (e.g. authentication), and are distinct from the mechanisms which implement
the services.

This discussion emphasizes services which can be provided between peer distributed
operating system hosts on an end-to-end basis. These services are independent of any
security-related services which may be provided within the intervening communications
facilities. The Network Layer (layer 3) is the lowest layer with end-to-end significance
between communicating hosts, therefore all services considered in this discussion will be
provided at the network layer or higher. It is possible that the set of security require-
ments needed by a distributed operating system (e.g., traffic flow confidentiality) may
necessitate link-oriented mechanisms in addition to end-to-end mechanisms.

Security services can be provided at a range of OSI protocol layers. In general,
as services are placed at lower layers, protection is host-oriented or link-oriented (e.g.,
coarse service granularity). There is also the potential for integrating the security services
as a separate hardware component on the communication path between the host and

3.4. NETWORK SECURITY 117

the network. When security services are placed at higher layers, protection is provided
on a per-user (or per- client) basis (e.g., fine service granularity). On a per-user basis
additional security services become appropriate. However, this requires more invasive
integration into the communicating hosts and their software, and raises the computer
security concerns that comes with that integration.

Not all security services are appropriate or feasible in all contexts, and it is necessary
to distinguish those services that can be encapsulated within the communications sub-
strate from those that must be provided (wholly or in part) within SDOS-specific host
TCB components. The selection of appropriate security services depends on several pa-
rameters, including the protocol layer positioning of peer entities between which traffic
is to be protected. For example, a host processing electronic mail incorporates protocol
peer entities spanning the OSI seven-layer range. But the set of security services ap-
propriate to protection of a host at the network layer is significantly different from the
set of security services appropriate to protection of an electronic mail user agent at the
application layer.

Placing security functions at lower layers or on the transport medium limits the
amount of data accessible to a wiretapper, because placing security service functions
higher in the protocol hierarchy passes more unencrypted header information. Though
security functions at a given layer rely on the unencrypted header information (i.e.,
control information) that is passed down from higher layers, the security functions need
not interpret the data passed with the headers. See Figure 3.2: PDU Construction.

Placed at lower layers, security functions can also limit the covert channel bandwidth
from the higher layers into the transport medium, but only if all paths from the higher
layers into the transport medium pass through the security mechanisms.

Independent of the layer at which security service functions are placed, they cannot
guarantee that higher layers function correctly. The primary purpose of most security
functions is to assure the security characteristics required by their clients, though certain
services, such as access control, act to restrict or filter the actions of their clients.

The five OSI security services are discussed in the following section. Authentica-
tion and access control are relevant security issues whether or not an environment is
distributed and have already been examined in their non-networking role. Provided in
the networking substrate, they further enhance this role. Data confidentiality and data
integrity are integral services to the message passing involved in a distributed operating
system. The fifth OSI security service, non-repudiation, is offered on a per-user rather
than a per-host basis. A possible sixth security service, communication availability, is
also discussed.

3.4.1.1 Security Services

3.4.1.1.1 Data Confidentiality When considering the concept of network secu-
rity, data confidentiality is traditionally the first service which comes to mind. This is

118 CHAPTER 3. DESIGN

especially true in the DoD classified environment, where protection of classified informa-
tion from unauthorized disclosure is of overriding importance relative to other security
services. Data confidentiality is important in the unclassified environment as well, al-
though in certain commercial contexts (e.g., EFT transfers) its importance is secondary
to authentication and integrity services.

The primary data confidentiality requirement in all environments is protection of
user data from disclosure. In the unclassified environment, the relevant concern (discre-
tionary confidentiality) can be defined as disclosure to an entity other than the data's
intended recipient. The DoD classified environment adds another concern (mandatory
confidentiality), that assumes primary importance: disclosure of classified data to an
entity which lacks sufficient clearance to receive it. Both types of confidentiality service
can be provided usefully at a range of OSI protocol layers.

In the DoD classified environment, traffic flow security is generally required in addi-
tion to user data confidentiality. The preferred approach to traffic flow security requires
physical layer link encryption, independent of any end-to-end encryption. Traffic flow se-
curity measures at higher protocol layers offer limited protection and can be excessively
costly with respect to network bandwidth.

3.4.1.1.2 Authentication

3.4.1.1.2.1 Data Origin Authentication The data origin authentication ser-
vice provides a recipient OSI peer entity with assurance that associated data originated
at the claimed source peer entity. The service is useful at a range of OSI protocol lay-
ers, affording finer authentication granularity (e.g., per-user instead of per-host) when
applied at higher layers.

In general, the data origin authentication service offers significant value only if a
data integrity service which ensures that the received contents have not been modified
in transit is also provided. There is limited utility in knowing that a message arrived
from a particular source unless the recipient can also be assured that the contents are
the same as those which were provided by the authenticated source entity. Fortunately,
the mechanisms used to provide data origin authentication are closely related to those
used to provide per-message data integrity.

3.4.1.1.2.2 Peer Entity Authentication The peer entity authentication ser-
vice confirms the identities of the connected peers, either at the connection establish-

ment phase or during the data transfer phase of the connection. Bidirectional assurance
of timeliness is provided. The peer entity authentication service can be provided only

in the context of a connection oriented communication service.

The peer entity authentication service is not applicable to connectionless communi-
cations or to contexts in which connections are terminated and regenerated at sites in-
termediate to endpoint systems. For example, while relevant to a virtual circuit between

3.4. NETWORK SECURITY 119

a pair of X.25 peer entities, peer entity authentication is inapplicable to an electronic
mail transfer in which a piece of mail is staged or relayed at intermediate points between
the application layer entities which process mail on behalf of users.

The peer entity authentication service is closely associated with host-based connec-
tion oriented protocols. And while the data origin authentication and per-message data
integrity services are not necessarily host-based, they can aid a host in offering support
of this service.

3.4.1.1.3 Data Integrity ISO 7498 Part 2, Security Architecture subdivides data
integrity services into several categories. Protection of an individual message's contents
from undetected modification, applied either to an entire message or to selected fields
within a message, is a basic level of data integrity service. In a connection oriented
environment, it is meaningful to offer additional data integrity services dealing with the
stream of messages transferred on a connection. These additional services are dependent
on the per-message data integrity services, and apply distinct mechanisms in order to
protect against undetected message reordering, loss, replay, and spurious insertion of
messages into a protected connection.

Data integrity services at the per-message level (per-message data integrity) are ap-
propriate at a wide range of OSI protocol layers. The per-message data integrity service
is closely associated with the data origin authentication service; both services are likely
to be based on shared cryptographic mechanisms. These services can be provided wholly
within a communications substrate, or the cryptography provided by the substrate sup-
porting a confidentiality service can aid SDOS-specific components in performing au-
thentication and message integrity checks.

Message stream integrity services are based commonly on host-resident protocol se-
quencing mechanisms. Provision of these mechanisms as communications substrate secu-
rity services that are not necessarily host-based raises significant integration and perfor-
mance issues. If a non-host-based communications substrate supplies host software with
a stream of authenticated messages, individually verified for integrity, it may be reason-
able for message stream integrity measures to be provided within existing host-based
protocols.

3.4.1.1.4 Access Control Access control is needed to enforce a distributed system's
security policy and to maintain the overall distributed system integrity.

In the OS! model, the access control service provides protection against unauthorized
use of OSI-accessible resources. This service can be provided on a group basis (e.g.,
X.25 closed user groups) or on an individual entity basis. The access control service
controls resource usage based on the authenticated identity of a would-be accessor,
and hence is closely associated with (although distinct from) the authentication service
which provides it with necessary identification data. Like the authentication service, the
granularity of available access control service becomes finer if the service is provided at

120 CHAPTER 3. DESIGN

higher OSI protocol layers.

In the DoD classified environment, the primary access control requirement is manda-
tory, bsed on a defined lattice representing information sensitivity as a combination
of hierarchic classification level and associated category designation. Although discre-
tionary access control is also required in the DoD classified environment, it assumes
importance secondary to that of mandatory access control. In the unclassified envi-
ronment, in contrast, no analogous information sensitivity lattice exists. As a result, a
strictly discretionary access control service is likely to be appropriate in this environ-
ment.

In a distributed environment where all SDOS TCB components are mutually trusting
and operate at the same access class, their internal access control mechanisms may ren-
der communications substrate access control functionality superfluous. Intra-substrate
access control could, however, be useful in establishing "firewalls" in front of any less
trusted hosts or hosts which operate at different access class ranges.

3.4.1.1.5 Non-Repudiation The non-repudiation services are subdivided into two
subcategories: non-repudiation, origin (prevention of a sender's falsely denying that
a message was sent) and non- repudiation, receipt (prevention of a recipient's falsely
denying that a message was received). In general, these services are associated with
individual human users, rather than hosts, and hence are inappropriate at protocol layers
below those at which individual users are distinguished. For example, all non-repudiation
services may be provided at the Application Layer. Since this layer is implemented within
SDOS, it may not be appropriate to offer a non-repudiation service within the enhanced
communications substrate.

3.4.1.1.6 Communications Availability Communications availability assurance
(protection against denial of service) may be an important issue, but is not addressed in
ISO 7498 Part 2, Security Architecture. Should communications availability be viewed
as a security requirement, its assurance must be addressed by mechanisms within the
interconnecting communications facilities themselves. It is possible for endpoint mod-
ules to detect certain types of communications service loss, particularly in a connection
oriented environment, but there is no way for endpoint modules to enhance the level of
communications availability provided by an intervening network. (It is assumed that the
endpoints are not provided with an alternate communications path over which messages
can be redirected in the event of a detected denial of service condition on a primary
path.)

3.4.1.2 Security Mechanisms

Figure 3.6 shows the classes of security mechanisms that are provided by the security
services (with the exception of communications availability) discussed in the previous
section.

3.4. NETWORK SECURITY

NIECHA1SM Encipher- Access Authenti- Routin,:
ment Control cation Control

Digital Data Exch2n1e Traffic Notari-

SERVICE Signa- Integrity Padding zafionlure

Data Confidentiality

User Data X X

Traffic Flow X X X

Data Integrity

Per.messnge X X X

Message Stream X X

Authentication

Data Origin X X

Peer Entity X X X

Access Control X

Non-Repud:ation X x

Figure 3.6: Security Services versus Security Mechanisms

122 CHAPTER 3. DESIGN

3.4.1.2.1 Encipherment Encipherment, or encryption, can be used to encrypt the
entire message stream, individual messages, the data within a message, or data fields
within a message. It complements or plays a role in many of the other mechanisms
discussed.

3.4.1.2.2 Digital Signature Mechanisms The digital signature mechanism is an
authentication technique, and as such can be used to provide the authentication security
service and the non-repudiation security service. It assures per-message integrity as well.
The signature is the result of a signer's private encipherment key applied to the data
unit.

3.4.1.2.3 Access Control Mechanisms Access control mechanisms may be based
on the distribution of cryptographic keys, on the contents of access control informa-
tion bases, or on an attempted accessor's possession of authentication information (e.g.,
passwords) or capabilities. In some cases, access control mechanisms also depend on the
contents of security labels associated with entities or with data units.

3.4.1.2.4 Data Integrity Mechanisms Enciphered, or non-enciphered block check
codes, cryptographic checkvalues, time stamping or cryptographic chaining can be used
to protect data integrity. The choice of mechanisms used depends on which form of data
integrity, message-stream integrity or per-message integrity, is needed. It also depends
on the strength of the data integrity service that is required

3.4.1.2.5 Authentication Mechanisms Passwords, cryptography, time stamping
and synchronized clocks, two- and three-way handshakes, and digital signatures used in
various combinations with one another are available choices to provide the authentication
service.

3.4.1.2.6 Traffic Padding Mechanisms Physical layer encipherment is the pre-
ferred mechanism to support a traffic flow confidentiality service, and is sufficient in itself
to provide that service, but traffic padding mechanisms (if complemented with a confi-
dentiality service at or below the layer where the padding mechanisms are implemented)
can be used to provide various levels of traffic flow confidentiality.

3.4.1.2.7 Routing Control Mechanisms Data routes through the network can be
chosen dynamically or statically based on the security labels of the data or knowledge
of the security of the individual networks.

3.4. NETWORK SECURITY 123

3.4.2 SDOS Network Security Approach

3.4.2.1 SDOS Network Security

For SDOS, host-to-host network security can be provided by integrating encryption-
based security in or near the Internet Protocol (IP) sublayer of the Network Layer (see
figure 3.5). This layer represents the lowest place in the OSI Reference Model where
end-to- end encryption can be done across the internet, and also limits the invasiveness of
communications substrate security integration into SDOS hosts. Encryption here serves
both the TCP and UDP traffic in a uniform fashion. Integration of security mechanisms
at higher layers passes more unencrypted control information in the message headers
(see figure 3.5), and would require individualized mechanisms for each of the higher
layer protocols. This would increase the security integration effort.

Encrypting messages at the IP sublayer provides:

" protection of information from unauthorized disclosure (data confidentiality),

" a recipient assurance that associated data originated at the claimed source (data
origin authentication),

" protection of an individual message's contents from undetected modification (per-
message integrity), and

" protection against unauthorized use of those resources accessible through SDOS
(access control).

For the case of TCP's sequenced traffic, placement of encryption and associated
security functions at the IP sublayer cannot provide stream oriented assurance. Instead,
the IP sublayer's security features provide the per-message secure basis on which trusted
TCP modules can build a secure stream-oriented communication service. Note that no
secure stream-oriented service is offered for UDP traffic.

Service granularity is limited with the IP sublayer placement, e.g., the access control
function cannot distinguish one application service from another (TCP from UDP);
therefore inter-service or inter-user segregation is handled above the communications
substrate by the trusted functions of the SDOS-specific layers.

3.4.2.2 Separate Versus Embedded Security Module

Traditionally, communication security modules are devices separate from the hosts they
are protecting, but the traditional host is untrusted. Given that SDOS is composed of
a set of trusted hosts, use of embedded communication security modules is suggested as
a flexible and cost-effective approach.

124 CHAPTER 3. DESIGN

3.4.2.3 Traffic Flow Confidentiality

The traffic flow confidentiality security service cannot be offered at the IP sublayer,
though it can be integrated lower within the communications substrate. Traffic flow
confidentiality can protect against passive wiretapping by non-SDOS hosts, though this
protection should be provided in a way independent of any SDOS security mechanisms,
i.e. in a network specific way. As deployment of a heterogeneous distributed system is
more easily achieved if the host components can be connected to an arbitrary communi-
cations network rather than requiring special characteristics in the underlying medium,
it becomes important to keep the use of physical layer traffic flow confidentiality mecha-
nisms separate a14d decoupled from the remainder of the network security architecture.

3.4.2.4 TCB Components

For SDOS the Application Layer down through all or part of the Internet sublayer are
in the TCB; layers below the Internet sublayer are not in the TCB. As encryption is
integrated into the Internet sublayer, the layers below the encryption-providing layer
have no relevant security function (except with regard to traffic flow confidentiality, as
discussed in Section 3.4.2.3). Some hosts may have these layers within the TCB while
others may not; the security or the functioning of SDOS is not affected.

The lower layers (Network: Subnet, Data Link, and Physical) should have the fol-
lowing properties:

1. It is important that the lower three layers be the only path by which messages can
reach network resources.

2. The lower layers should be isolated from other modules within the system prevent-
ing unauthorized data flows across the encryption boundary.

3.4.2.5 Relationship With The Trusted Network Interpretation Document

According to the draft Trusted Network Interpretation (TNI), it is acceptable to decom-
pose the implementation of Discretionary Access Control, Identification/Authentication,
Audit, and Mandatory Access Control mechanisms among multiple mutually trusting
components. It is not reasonable to decompose implementation of functions among com-
ponents which are not mutually trusting. In the case of SDOS, the distributed system
functions are decomposed among a cooperating set of SDOS computers.

The lowest assurance level in any component supporting a decomposed mechanism
sets an upper bound on the assurance level which can be claimed for that mechanism.
While it is not necessary from the TNI viewpoint that each component meet the full
complement of Department of Defense Trusted Computer System Evaluation Criteria
(TCSEC) (DOD- 5200.28STD) standards at a particular level, it is necessary for each

3.5. DESCRIPTIVE TOP-LEVEL SPECIFICATION 125

component to meet the TCSEC assurance requirements in addition to correctly perform-
ing its role in the TNI- evaluable network-level distributed functions which are allocated
to the component.

3.5 Descriptive Top-Level Specification

This section describes the portions of the programmer interface to SDOS that relate to
the security of the system. Since SDOS is based on the Cronus DOS, operations which
do not relate to security are unchanged from Cronus and can be found in the Cronus
User's Manual [Cronus 88].

The SDOS services visible to a developer are the kernel and a set of managers. The
SDOS programmer interface is divided into two parts: a set of system calls supported
by the Message Switch component of the SDOS kernel, and a set of operations defined
by various types. The types that are described in this section include:

" host: corresponds to the kernel on the local host;

* process: the object that is associated with an executing program;

" principal: used to associate an identity and label with each process; the principal
is used for discretionary access control.

" project:, associated with principals, projects are also used for discretionary access
control;

* object: this type is the supertype of all other types; operations defined on it are
inheritable by all other types.

Note that the target object of an invocation is always an implicit parameter to all
operations.

3.5.1 Message Switch System Calls

SDOS supports the multi-level security policy based on message passing, as described
in Section 2.1.2. The purpose of multi-level security is to prevent the unauthorized
access of information by users of the system. This is achieved by classifying information
in accordance with its sensitivity; tagging each user and device with a security level
clearance; and denying users having inadequate clearance to access sensitive information.

The SDOS kernel provides three systems calls. All other services provided by the
SDOS kernel. and other system services are provided through the use of these systems
calls. The system calls provided by the SDOS kernel are:

126 CHAPTER 3. DESIGN

" Invoke: used to invoke an operation on an object. Causes a message to be trans-
mitted to the process managing the object. If the location of the object is not
known, the Message Switch delivers the invocation request to the Locator kernel
component, which is responsible for determining the location of the object. Invoke
may be called by any process. The parameters to Invoke are:

- host (input parameter; hereafter abbreviated in): location of the object (op-
tional);

- object (in): object on which operation is invoked;

- label (in): label of the message being invoked (optional; if not included, the
message is labeled with the minimum label of the process);

- message (in): buffer containing the invocation request, including the opera-
tion;

- messagelength (in): length of the buffer;

- sendflags (in): flags indicating message delivery requirements;

- writeup (in): a flag indicating whether the operation is a write up;

- messagehandle (output parameter; hereafter abbreviated out): unique iden-
tifier of the message transaction.

An Invoke can fail for security reasons if the invoker sets an inappropriate security
label, or if the Message Switch is unable to deliver the message without violating
the security policy.

" Reply: used to reply to an invocation request; it is callable only by a manager.
Causes a reply message to be transmitted to the client process that previously
invoked an operation on an object managed by the calling process. The parameters
to Reply are:

- host (in): location of the client process;

- process (in): client process object;

- label (in): label of the reply message (optional; if not included, the message
is labeled with the minimum label of the process);

- message (in): buffer containing the reply;

- messagelength (in): length of the buffer;

- sendflags (in): flags indicating message delivery requirements;

- messagehandle (out): unique identifier of the message transaction.

Reply will fail for security reasons if the Message Switch is unable to deliver the
message without violating the security policy.

" Receive: used to receive the manager reply to an invocation request; it is callable
by any process. Receives returns a message if one is awaiting delivery; otherwise,
the calling process is either blocked or the call fails (depending on the flags select
by the caller). The parameters to Receive are:

3.5. DESCRIPTIVE TOP-LEVEL SPECIFICATION 127

- descriptor (in): a descriptor used by the kernel to match the reply with the
original invoke;

- message (in): address of buffer in which to place the reply;

- messagelength (in): length of the buffer;

- timeout (in): length of time to wait if not message is queued for delivery;

- Blockflag (in): indicates whether the process should block if no message is
queued for delivery;

- messagehandle (out): unique identifier of the message transaction.

3.5.2 Type Host

An object of type host represents the SDOS kernel on a particular host. Operations on
a host object are grouped into three categories: operations on the Security Database on
the host, operations on the Object Database on the host, and operations to monitor and
control the execution of SDOS on the host. Each of these is considered separately.

3.5.2.1 Security Database

The Security Database is a component of the kernel that is responsible for maintaining
the security labels for all objects on the host where the kernel executes. The Security
Database provides a set of routines to clients for accessing the security labels. These
routines may be invoked from inside the kernel by the Object Database and the Message
Switch; or outside the kernel by the System Manager user (who is responsible for setting
the security labels of objects) and remote kernels. When one of the routines is invoked
from outside the kernel using the object-oriented invocation protocol, the target object
of the invocation is the host object on which the security database resides.

The following operations are defined by the Security Database:

" CreateSDBEntry: used to create an entry for a new object. This operation is
invoked by the Object Database as part of the CreateODBObject operation for
new object instances or by the Configuration Manager as part of configuring new
types or hosts into the system. In the case of a newly created object instance, the
security label of the object to be created in the entry must be dominated by the
security label of the object's type. The parameters to CreateSDBEntry are:

- object (in): object identifier;

- label (in): label of the object;

- type (in): type of the object;

* RemoveSDBEntry: deletes an entry for an object being removed from this host
or destroyed. This operation is invoked by the Object Database as part of the

128 CHAPTER 3. DESIGN

RemoveODBObject or by the Configuration Manager as part of changing the
system configuration. The parameters to RemoveSDBEntry are:

- object (in): object for which entry is to be removed.

* ModifySDBEntry: used to modify the attributes of an object. This operation
can be invoked by the System Manager. The parameters to ModifySDBEntry
are:

- object (in): object for which label is to be modified;

- label (in): new label;

" ReadSDBEntry: used to return the Security Database entry of an object. This
operation is invoked by the Message Switch and the Object Database when check-
ing the existence and security label of objects. The parameters to ReadSDBEn-
try are:

- object (in): object for which entry is desired;

- SDBentry (out): entry being read.

" ReplicateSDBEntry: used to make an SDB entry for an object that exists on
another host. This operation is invoked by the Object Database. The SDB is re-
sponsible for reading the label of the object being replicated from the remote SDB,
and for informing other SDB's of the new location of the label. The parameters
to ReplicateSDBEntry are:

- object (in): object for which entry is desired;

- host (in): host where object currently resides.

" DereplicateSDBEntry: used to remove the label of the object from the local
SDB even though it exists elsewhere. This operation is invoked by the Object
Database. The parameters to DereplicateSDBEntry are:

- object (in): object for which entry is to be removed;

3.5.2.2 Object Database

The Object Database is a component of the kernel that is responsible for maintaining
the representation of abstract objects on secondary storage on the host where the kernel
executes. The Object Database provides a set of routines to object managers to create,
retrieve, update, replicate and dereplicate objects. The Object Database ensures these
accesses conform to the mandatory security policy. When one of the routines is invoked
from outside the kernel using the object-oriented invocation protocol, the target object
of the invocation is the host object on which the security database resides.

The Object Database enforces several properties on the objects it stores. First,
the Object Database contains an entry for each object managed on the host. Second,

3.5. DESCRIPTIVE TOP-LEVEL SPECIFICATION 129

it ensures that a manager may only access objects of types that it is responsible for
managing. Third, it ensures that the Security Database entries for a replicated object
are all consistent with one another. And last, the Object Database ensures that the
accuracy of the list of hosts where an object resides is properly maintained. This list
indicates the hosts where copies of the object reside if the object is replicated.

The following operations are defined on the Object Database:

" CreateODB Object: This operation creates an object and invokes the CreateS-
DBEntry operation to create an entry for the object in the Security Database.
Only a manager for the object's type may invoke this operation. The security label
of the object is extracted from the message delivering the invocation request. If
the security label of the object is not equal to but dominates the security label of
the invoker (i.e., it is a write up operation), then the operation will always return
a positive acknowledgement, even if the object already exists. The parameters of
the CreateODBObject are:

- object (in): the representation of the object being created;

- objectUID (out): the identifier of the created object.

" RemoveODB Object: Removes the object from the Object Database, and causes
the RemoveSDBEntry operation to be invoked. Only a manager for the object's
type may invoke this operation. It causes the Object Database to invoke nested
RemoveODBObject operations on each host that the object is replicated on.
The Object Database checks that the security label of the invoker dominates the
security label of the named object. The parameters of the RemoveODBObject
are:

- objectUID (in): identifier of the object to removed.

" ReadODBObject: Returns the state of the object from the Object Database.
The Object Database checks that the security label of the manager is the same as
the security label of the named object. The parameters of the ReadODBObject
are:

- objectUID (in): identifier of the object to read;

- object (out): representation of the object.

" WriteODBObject: Writes a new state of an object into the Object Database.
Only the manager for the object's type may invoke this operation. The Object
Database checks that the security label of the invoker is dominated by the security
label of the named object. The parameters of the WriteODBObject are:

- objectUID (in): identifier of the object to written;

- object (in): representation of the object;

130 CHAPTER 3. DESIGN

" ReplicateODBObject: Creates a copy of an existing object in the local Object
Database on a remote Object Database on the named host. This causes the Repli-
cateSDBEntry operation to be invoked by the local Object Database to move a
copy of the object's label to the local host. Only a manager for the object's type
may invoke this operation. The parameters of the ReplicateODBObject are:

- objectUID (in): identifier of the object to replicate;

- host (in): host where a copy of the object already resides.

" DereplicateODBObject: Removes a copy of an existing object in the local
database. Only a manager for the object's type may invoke this operation. It
causes the DereplicateSDBEntry operation to be invoked to remove the label
of the object from the local SDB. The parameters of the DereplicateODBObject
are:

- objectUID (in): identifier of the object being dereplicated.

3.5.2.3 Host Monitoring and Control

The majority of host operations for monitoring and controlling a DOS kernel on a host
are unaffected by the addition of multilevel security features. The operations are:

" Restart: to restart the kernel;

" Shutdown: to shut the kernel down;

" CreateService: to create a new manager process;

" RemoveService: to terminate a manager;

" ObtainServices: to list the services configred to execute on the host;

" ListServices: to list the services that are started on the host;

" ListProcesses: to list the processes executing on the host;

" SetObjectCache: to add an entry to the object cache;

" ClearObjectCache: to empty the object cache;

" DumpObjectCache: to display the contents of the object cache;

" ReportStatus: to report the status of the kernel;

" GenerateUno: to create a new set of unique numbers (UNOs) used to create
unique identifiers (UIDs).

3.5. DESCRIPTIVE TOP-LEVEL SPECIFICATION 131

Of these, cache controlling operations are extended to support a multilevel cache,
but their interfaces remain unchanged from the Cronus counterparts. Additionally,
ListServices and ListProcesses return status information for the appropriate access
class. And a mandatory discretionary policy will limit who can start and stop services
and the kernel (e.g., the System Manager) in a more constrained way (i.e., their access
control lists will reflect the discretionary security policy on this information). However,
no interfaces will change.

3.5.3 Type Process

Process objects are the schedulable entities in the system. They are active, meaning
they invoke operations on objects, and they have identities and labels. Their identities
determine the objects they are permitted to access. Their labels determine the labels
they may assign to messages they send and the set of messages they are permitted to
receive.

The operations defined on processes include:

" SetProcessBindings: assigns the process a label and an identity. This opera-
tion is invoked by the Authentication Manager as a result of a user authentication
(the AuthenticateAs operation) or the initiation of a service (the CreateSer-
vice operation or automatic initiation of a service by the message switch). The
parameters to SetProcessBindings are:

- bindings (in): process bindings (i.e., their identity; see Section 3.6.4 for more
details)

- label (in): label of the process.

" ShowProcessBindings: returns the bindings of the process. This operation is
invoked by a manager needing the bindings of a client process for access autho-
rization. The parameters to ShowProcessBindings are:

- bindings (out): process bindings.

* ClearProcessBindings: removes the bindings of the process.

" ChangeActiveCCI: sets the active client contextual identity (see Section 3.6.4
for a complete description). Invoked by a process on itself. The parameters to
ChangeActiveCCI are:

- CClname (in): name of CCI to make active.

" ModifyActiveCCI: further constrains a client contextual identity. Invoked by a
process on itself. The parameters to ModifyActiveCCI are:

- CCIname (in): name of CCI to modify;

- CCI (in): new CCI to replace the named one.

132 CHAPTER 3. DESIGN

" ObtainProxy: returns a client contextual identity (CCI) that the process received
from a second process. The process that invokes this operation (the invoker) is
a manager attempting to do access authorization. It is attempting to obtain a
CCI for one of its clients. The process on which this operation is invoked (the
invokee) is a manager that invoked an operation on the invoker. A proxy marker
for the CCI was passed to the invokee by the client process. The parameters to
ObtainProxy are:

- proxymarker (in): proxy marker for which CCI is to be returned;

- CCI (out): CCI which the marker identifies.

" ObtainKey: returns the public encryption key of the process manager. The
parameters to ObtainKey are:

- publickey (out): public encryption key of the Process Manager.

" SetKeys: sets the public and private encryption keys for a manager on a host.
This operation may only be invoked by the System Manager. The parameters to
SetKeys are:

- publickey (in): public encryption key;

- privatekey (in): private encryption key.

" ReadACLDescription: returns the description of the ACL for a type. The
invokee of the operation is a manager process. The parameters to ReadACLDe-
scription are:

- bindings (out): process bindings.

In addition, the following operations are supported by all managers (they are imple-
mented by type Object and are inherited by all other types):

" ReportStatus: show the status of the manager;

• SetLoggingLevel: set the level of detail for the manager to print in logging its
actions;

" SetTaskingLevel: set the number of tasks that may be initiated to handle con-
current requests by this manager;

" DescribeType: describes the interface to this type.

These operations are unaffected by the introduction of mandatory security features.
However, these operations are no longer generic operations, but are rather operations
on a process rather than on a type. As a result, the invokee of these operation should
always be a manager process.

3.5. DESCRIPTIVE TOP-LEVEL SPECIFICATION 133

3.5.4 Type Principal

A principal is an object which contains an identity and label that becomes associated
with processes as part of user authentication or service initiation. The operations defined
on principals are:

" ChangePrincipalPassword: modify the password of a principal. This operation
may only be invoked by the System Manager. The parameters to ChangePrin-
cipalPassword are:

- password (in): new password for the principal.

" LookupPrincipalName: Return the name of a principal. The parameters to
LookupPrincipalName are:

- prinname (out): name of principal.

" LookupPrincipalUED: returns the UID of a named principal. The parameters

to LookupPrincipalUlD are:

- prinname (in): name of the principal.

- prinUID (out): UID of the principal.

" AuthenticateAs: authenticates a particular pr--cess as the principal. Causes the
password and username to be looked up and compared to the input values. If the
operation succeeds, it causes the SetProcessBindings operation to be invoked.
The parameters to AuthenticateAs are:

- username (in): name of user being authenticated.

- password (out): password of user account.

" ChangePrincipalLabel: used to modify the label associated with the principal
when it is bound to a process. Note that this label is not the label of the principal
itself. The parameters to ChangePrincipalLabel are:

- label (in): label of processes that are bound to this principal.

" AddCCI: adds a client contextual identity to the principal that will be assigned
to a process executing as this principal. The parameters to AddCCI are:

- CCI (in): new client contextual identity.

- CCIname (in): name of the new client contextual identity.

" RemoveCCI: removes a client context identity of a principal. The parameters to
RemoveCCI are:

- CCIname (in): client contextual identity to remove.

134 CHAPTER 3. DESIGN

* SetDefaultCC: selects a particular client contextual identity to be set to the
the active CCI when it is bound to a process. The parameters to SetDefaultCCI
are:

- CClname (in): client contextual identity to set to the default active CCI.

3.5.5 Type Project

A project is a set of principals. When a project is created, it is inserted within an
existing project. Thus, projects are organized into a hierarchy. The operations defined
on projects are:

* ShowMembers: returns the members of a project. The parameters to ShowMem-
bers are:

- members (out): list of principals.

* AddMembers: adds new principals to a project. The parameters to AddMem-
ber are:

- principals (in): list of principals to add to the project.

* RemoveMembers: removes principals from a project. The parameters to Re-
moveMember are:

- principals (in): list of principals to remove from the project.

& LookupProjectName: looks up a project's name from its identifier. The param-
eters to LookupProjectName are:

- projectname (out): name of the project.

* LookupProjectUlD: looks up a project identifier from its name. The parameters
to LookupProjectUD are:

- projectname (in): name of the project;

- projectUID (out): UID of the named project.

* RenameProject: renames a project. The parameters to RenameProject are:

- projectname (in): new name of the project.

3.5. DESCRIPTIVE TOP-LEVEL SPECIFICATION 135

3.5.6 Type Object

SDOS types will be implemented within a type hierarchy. This hierarchy supports
operation inheritance, in which operations defined by a type are inherited, or reusable,
by any of its subtypes. Type Object is the root, or supertype, of the SDOS type hierarchy.
Most of the operation interfaces on type object are unaffected by mandatory security
features. They will have the same interface as documented in the Cronus User's Manual
[Cronus 88]. However, the behavior of operations may be constrained by mandatory
rules.

The parameters of many of these operations vary from object to object as they are
reimplemented to be specialized for each specific type. We only include parameters for
operations that involved discretionary access control.

The operations defined on type object are:

" Create: Creates a new object. A label is added to the interface which specifies the
label of the object to create. This label is passed on to CreateODB Object. The
invoker's label must be dominated by the object's label. The parameters of the
operation depend on the type of object being created; this operation is generally
refined for each type that inherits it.

" Remove: Removes an object. See the Cronus User's Manual for the Interface
description. The invoker's label must be dominated by the object's label. There
is generally no operand beyond the object being removed.

" Locate: Returns the location of an object. There is no operand being the object
being located. The object's label must be dominated by the invoker's label.

" ReadACL: Returns the contents of the access control list of the object (see sec-
tion 3.6.4). The object's label must be dominated by the invoker's label. The
parameters to ReadACL are:

- ACL (out): the access control list for the object.

" AddToACL: Adds entries to the object's ACL. See the Cronus User's Manual for
the interface description. The invoker's label must be dominated by the object's
label. The parameters to AddToACL are:

- ACLentries (in): A list of ACL entries to be added to the object's ACL.

" RemoveFromACL: Removes entries to the object's ACL. The invoker's label
must be dominated by the object's label. The parameters to RemoveFromACL
are:

- ACLentries (in): A list of ACL entries to be removed from the object's ACL.

I, iMELI I I i

136 CHAPTER 3. DESIGN

3.6 Design Specification

This section describes the security-relevant parts of the SDOS design. It covers the
modules and databases that participate in the enforcement of the discretionary and
mandatory security policies. Some discussion of the reasons for design decisions is in-
cluded. Readers are assumed to be familiar with Section 3.1, which introduces the
concepts of clients, managers and objects. It should also be noted that there are several
discrepancies between the formal top level specification presented in the next section
and this design. These discrepancies reflect several simplifying assumptions made to
simplify the formalization activities; they are discussed further in Section 4.1.

The SDOS mandatory security policy is enforced by the SDOS kernel. Descrip-
tions of the kernel's modules and databases are given below. Additionally, the SDOS
trusted computing base, or TCB, is described. The SDOS discretionary security policy
is enforced by the individual object managers because some aspects of the discretionary
policy are object-type-specific. The reasons for the location of the discretionary policy
are discussed in more detail below. The discretionary policy which must be implemented
by each manager is described in detail below.

3.6.1 Reasons for Design Decisions

3.6.1.1 DAC in Managers

One of the fundamental decisions in the design of a secure system is the choice of locations
for the implementation of security mechanisms. Factors that enter into the decision
include architectural considerations (proper layering and performance), assurance of
the trusted mechanisms, and minimization of TCB size. The decision to implement
mandatory controls in the SDOS kernel was quite clear: mandatory controls in a message

passing system are naturally placed in the component which routes messages, as this is
the central point of mediation between the correspondents.

For discretionary controls the choice was more difficult. The SDOS discretionary
control scheme allows, in general, for a different set of discretionary control privileges to
be defined for each object type. The SDOS discretionary control scheme is discussed in
great detail below. Briefly, an ACL consists of a list of entries, each of which consists
of some client identity information, and a list of the operations (privileges) which the
bearer of that identity is permitted to invoke on the object. The set of legal operations
is different for each object type. Therefore the set of operations that can appear in an
ACL entry is different for each object type, and the code that searches and interprets
an ACL must be different for each object type (at the very least, driven from different
tables). This argues for placing ACL interpretation in the manager of each object type.

However, managers are assumed to have different levels of assurance, being writable
by different users. The idea that it is acceptable for DAC to have lower assurance than

mandatory controls has gained some acceptance recently. We suggest that each type

3.6. DESIGN SPECIFICATION 137

have a discretionary security policy which determines the required assurance for that
type. For developers of untrusted and unreliable application software, discretionary ac-
cess controls will have little assurance. Developers with the expertise to write multilevel
secure application software, may extend the system TCB to encompass the discretionary
controls. Additionally, as discussed in 3.6.4, we suggest ways that application develop-
ers with limited expertise can achieve a high assurance of discretionary controls when
appropriate mechanisms are supported at lower levels. Placing discretionary controls in
managers provides the application developer with flexibility over both the functionality
of the controls and their assurance.

3.6.1.2 Mandatory Security

There are several design decisions that relate to the SDOS mandatory security controls.
Some are dictated by adopting an object-oriented architecture based on message passing,
others reflect trade-offs between generality and complexity. This section attempts to
make explicit the most basic of these decisions as well as describing some of the complex
ones.

Hosts may be multi-level secure (i.e., have access class ranges). This decision is
dictated by our implementation strategy to include both single level and multi-level
secure hosts in our distributed environment. A distributed system-consisting of simply
single-level hosts makes it impossible to access (in an automated fashion) arbitrary
objects across access classes. This is a severe limitation. Access is restricted by the
inability of high-level clients to read down into untrusted managers at lower levels in
order to access lower-level objects without leaking information. This limitation is a direct
result of the required communication between (frequently) untrusted correspondents in
order to invoke operations reliable in SDOS. In contrast, conventional systems allow
access to only passive data through trusted channels, and thus avoid this limitation.
However, they also make it impossible to define data abstractions in application-specific
ways.

Manager processes may be either single level or multi-level secure. Multi-level secure
managers must populate a system in order to allow objects to span a wide-range of
access classes on a single host when the objects have requirements for high performance
(e.g., files). Though the functionality of any multi-level manager can be achieved by a
set of single-level managers, the limitations that operating systems place on the number
of processes makes SLS managers prohibitive in many instances. Although SLS man-
agers can be instantiated and destroyed dynamically to get around this limitation, the
performance of such a mechanism will not always be acceptable. Additionally, build-
ing composite MLS structures (for example, a multi-level secure document consisting of
paragraphs with different access classes) is only feasibly achieved with MLS managers.

All other (nonhost, nonprocess) objects are single level secure. This choice presented
a trade-off between system complexity and understandability; the decision was made
to simplify the mechanisms supporting object location and storage. Structures which

138 CHAPTER 3. DESIGN

are inherently multi-level secure can be implemented a set of single-level secure objects
with different access classes. Such a structure can be defined as an object by an MLS
manager. The security policy on the MLS manager would dictate that the object be
given an access class that dominates the access classes of all of its components.

All SDOS object types are potentially multi-class. That is, the access class of objects
of a type are limited only by the assurance of software that manages objects of the type
and the access class range of the host on which they reside.

Not all managers will be certified as MLS. This is critical yet straightforward decision.
Managers are the implementation of applications and it is assumed that there will be a
wide variety of managers in a typical SDOS configuration. Since it will not be feasible
in the foreseeable future to demonstrate whether an arbitrary manager satisfies an MLS
policy, we can expect that user-written managers will generally not be certified as MLS.
These SLS managers will be confined to operate within a single access class; the security
policy is imposed on them by the SDOS kernel and the underlying COS.

Single level secure processes cannot reliably communicate with one another if they
have different access classes. This is a direct consequence of the security policy applied
over a sequence of send message operations. It is based on the design principle adopted
from the Cronus DOS that the Message Switch delivers messages without inspection of
their content (with the exception of their security label). Kernel minimality and the
extensibility of the system make it undesirable and impossible for Message Switches to
examine messages. Since the Message Switch will simply forward messages in accordance
with the mandatory security policy, it is impossible to transfer a message between SLS
processes in different access classes without leaking information. A typical nonmanager
client process is assurried to be running completely untrusted code. Such a client can
only communicate with a manager at its own access class (or in the case of a MLS
manager, one whose range includes the class of the client). An invoke down (e.g., a
top secret client invoking an operation on a secret object) can only be handled by a
MLS manager; with single level managers, the top secret client would be forbidden from
communicating with the secret manager. An invoke up can return no results, so it can
only be used to write up to an object. Invoking up is achieved by the client indicating
that the operation is a write up.

It is possible to run more than one SLS manager for a given type on a single host.
The generality of most applications will result in objects of a type to be at a wide range
of access classes. Requiring these types to be MLS is unnecessarily restrictive. Requiring
that a manager for each access class execute on a different host does not scale. Therefore
it must be possible to execute managers at each access class on a single host.

Single level managers can be dynamically instantiated in response to demand for
them. Since there could be objects at a very large number of different access classes, it
is impractical for single level managers at every access class to be running all the time;
the COS process tables and memory resources would be exhausted. Exactly how they
are instantiated (and disinstantiated), and exactly what constitutes demand for them,
are the subjects of a very involved design discussion, which will be summarized later.

3.6. DESIGN SPECIFICATION 139

With the exception of systems calls to send and receive messages, all system calls
conform to the object oriented invocation protocol. This decision represents the selec-
tion of increased functionality and flexibility over performance. Systems calls are those
operations handled by the kernel (specifically, by the Process and Host Managers). By
standardizing these system calls using the object invocation protocol, it is possible to
invoke any of these operations from remote hosts. This allows remote access to the
Security Database (such as when coordinating the update of an object's security label),
and remote access to the Object Database (providing similar functionality as a remote
file system).

3.6.2 The SDOS Trusted Computing Base

The SDOS TCB consists of the kernel and a set of multi-level secure managers that
provide system services. The trusted managers operate according to the object-oriented
abstraction, just as all other managers. Since the kernel is the entity that implements the
object-oriented abstraction, that abstraction is not available for use within the kernel.

The kernel consists of the Message Switch, the Locator, the Process Manager, the
Host Manager, the Process Table, the Security Database and the Object Database. The
trusted managers include the File Manager, Catalog Manager, Authentication Manager,
and Trusted Interface Process. The Catalog Manager and File Managers are trusted
because they manage many objects of different access classes and need to be MLS for high
performance. The Authentication Manager is trusted because of the required assurance
of authentication. The Trusted Interface Process is trusted to provide a trusted path
between clients and other services (e.g., the Authentication Manager for authentication
and to services to modify access control privileges).

The function of each of these TCB components is briefly described below. More
detailed descriptions follow in succeedings sections.

" Message Switch: Routes messages between entities, both locally and remotely.
Enforces the mandatory security policy governing the passing of messages between
entities. Communicates with its peer Message Switches on other hosts, and coop-
erates with them in the passing of messages and the enforcement of the security
policy.

" Locator: Locates objects that do not reside on the local host. Provides this service
only to the local Message Switch, and responds to locate requests from remote
objects. Maintains a cache containing the locations (remote host IDs) of recently
used remote objects. Remote objects are located by broadcasting a request for
the object to all hosts. If no positive response is received after a suitable interval,
failure is reported to the Message Switch.

" Process Manager: Creates and destroys processes, and maintains (sets and
shows) process bindings. Process bindings is the term for the set of information

140 CHAPTER 3. DESIGN

that includes a user's identity, and mandatory and discretionary access control
attributes.

" Host Manager: Operations on hosts are used to monitor and control the host,
such as creating new services, access the object cache for locating objects, and
booting and shutting down the system.

" Security Database: The collection of data needed for the enforcement of the
mandatory security policy. This information includes, for each entity on a host:
an access class label; a switch indicating single-level or multilevel-secure; for a
replicated object, the number of replicas in the system; and for an object type,
information about its manager, including: whether local managers exist, whether
they are active, and the location of their executable code.

" Object Database: Provides storage for all objects that reside on the local host.
Used by object managers.

" Process Table: Contains information about all active processes on the local host,
including the process bindings. Maintained by the Process Manager. Consulted
also by the Message Switch, when making mandatory access control decisions.

* File Manager: A multilevel secure manager, allowing the write-up and read-down
operations. Also implements create, delete, open, and close operations.

" Catalog Manager: Provides an abstract space of symbolic names for objects.
Translates from an object's symbolic name into its UID. (The UID is used to
reference an object when invoking an operation.)

" Authentication Manager: Implements login and logout requests from interac-
tive users. Sets appropriate process bindings for users logging in.

" Trusted Interface Process: Implements a trusted path between the system and
an interactive user at a terminal. Maintains the state of the terminal, with respect
to whether or not a user is logged in. Relays login requests to the authentication
manager. Relays the requests of a logged-in use, to other parts of the system

* Other MLS Managers: Developers can implement other MLS managers and
add them to the system. The System Certifier is responsible for certifying their
MLS properties, and the System Manager configures the managers on hosts..

Figure 3.7 shows the communication paths between client and manager processes
and the SDOS kernel. Figure 3.8 shows the direct logical communication paths between
these components, hiding the Message Switch and Locator.

3.6. DESIGN SPECIFICATION 141

System US ER S
Manager

aeri na Typ Arma

typess pPoes ace e

Securtyi Datab s I je t D t b seP o es(a a e

LocatoSrO Meernelwtc

Fiue .:SDSComncain7ah

142 CHAPTER 3. DESIGN

System US E RS
Manager

0 0
Terminal Terminal
tnterlace Inlerface Acolication
Process Procss Inlerlace

Object Object
Manager Manager

Type A

Securct DatabasePrcsMage

Figure 3.8: Communication Paths, Hiding the Message Switch

3.6. DESIGN SPECIFICATION 143

3.6.3 Detailed Description of the Major TCB Components

3.6.3.1 The Message Switch

The Message Switch moves messages between processes and between hosts. It provides
four major services: checking the security label specified for a message; stamping a secu-
rity label, host, and process identifier on messages; locating the destination of messages;
and transferring messages from their source to their destination. When a process invokes
a Invoke or Reply operation to transfer a message, the following actions are taken by
the Message Switch:

" When an operation to transfer a message is initiated, the Message Switch deter-
mines if the security label of the message is properly set based on the security
label of the process sending the message. The security label of the process is ob-
tained from the Security Database using the identifier of the process. If the process
transferring the message does not have the privilege to set the security label of the
message to its current value, then the operation returns an error. If the label field
in the operation is null then the field is set to the security label of the sending
process.

" If the client indicates that the operation is a write up, then the label of the object
on which the operation was invoked is used as the label of the message.

" The security label, sending process, and local host identifier are added to the
message.

" The Message Switch determines the destination of the message. If the Reply oper-
ations was used to send the message, then the destination is retrieved from the host
field of the UID of the process. If the message is being transferred with Invoke,
then the Message Switch transfers the message to the Locator. Asynchronously,
the Locator will return a host destination and label of the object, or an error. If
the client indicated that the invoke was a write up operation, then the label of the
object is used as the message's labei.

" When the destination of a message is on a remote host, the Message Switch on the
source host is responsible for relaying the message to the Message Switch on the
remote host. The Message Switch will obtain the label of the destination host from
its local Object Database. If the label of the messages is with the range of labels
of the host then the message is routed to the destination host. Otherwise, the
Message Switch returnb an error. (Note that this check could also be performed
within the communications subsystem.)

" When a message is transferred between hosts, the Message Switch on the destina-
tion host checks that the source host has the privilege to send the message based
on the security label of the message and the security label of the sending host.
The security label of the sending host is obtained from the Security Database. If

144 CHAPTER 3. DESIGN

the transfer is not secure, then the remote host Message Switch sends a negative
acknowledge for the transfer and discards the message. (Note that this check could
also be performed within the communications subsystem.)

9 When a message is received by the Message Switch on the destination host, the
Message Switch determines the manager to receive the message. If the message was
sent with a Reply operation, it is directed to the process named in the invocation.
If the message was sent with the Invoke operation, the Message Switch checks
the Process Table for the object's type. This entry will indicate whether a new
manager process should be instantiated (when no process exists or the manager is
a single client manager; see the Process Table discussion below), or the message
transferred to an existing one.

3.6.3.2 The Process Table

The Process Table is a structure maintained by the Process Manager which records
information about client processes and managers executing on a host, and managers
that are configured to execute but may be dormant. The Process Table records the
process identifier, an indication of whether it is a client or service, its process bindings,
administrative information (e.g., its COS process identifier), and, if the process is a
manager, whether the manager processes should be automatically deinstantiated. The
Process Table is read by the Message Switch to determine when to instantiate a new
manager.

Managers will be disinstantiated in response to requests to instantiate new managers,
when COS resources are close to exhaustion. Algorithms for choosing a manager to
disinstantiate are similar to page replacement algorithms: choose the least recently
used page (or manager), but allow for some system-manager-settable parameters to give
more preference to managers that are known to be performance-critical or expensive to
instantiate (long initialization times). To increase performance, a few empty manager
processes could be kept around, to speed up instantiation of managers. These processes
would have all of the COS-specific initialization already done, and would only need to
run the manager-specific initialization before becoming usable.

3.6.3.3 The Locator

The Locator is a module within the kernel that determines the location of an object when
an operation is invoked on it. The Locator needs to be multi-level secure in order to read
the Security Database to discover objects' existence. The Locator could be placed in a
process outside the kernel at the cost of decreased performance. The Locator maintains
a cache of remote objects to expedite the location of frequently referenced objects. The
cache is multi-level secure to avoid its use as a covert timing channel (see 4.1.2.5 for a
further discussion of these issues).

3.6. DESIGN SPECIFICATION 145

The following steps take place in the Locator, when the OS asks it for the location
of an object:

" It consults its cache; if the object is in it, the cached location is immediately
returned to the Message Switch.

" If the object is not in the cache, the Locator issues a Locate operation on the
object. This operation is broadcast to all hosts.

" On each host, the Message Switch receives the locate and forwards it to the Locator
on the host. A Locator will return with the following information:

- an indication of whether the object is located on the host (obtained by ex-
amining the Security Database);

- the execution status of the manager (obtained from the Security Database
and the Process Table):

* whether a manager for the object is already executing on the host; if so,
the manager process is returned;

* whether a manager may be dynamically instantiated on the host;

- load or storage status of machine, for resource control (this is obtained from
performance measures that could be maintained by the Kernel);

- any type dependent data that was registered with the Locator (such as how to
handle specific operations); this may be obtained from the Security Database;

- the label of the object (if found).

This information is obtained from the Process Table.

" The Locator originating the locate request waits for responses. If several valid
destinations are returned, then the object is replicated. In this case, the Locator
chooses the best one. The Locator uses information about the application (such
as which copy of the object is the primary copy) or run-time information (e.g.,
performance information) to choose the best copy.

The final destination(s) is stored in the object cache. The best destination (or
only destination, in the case of unreplicated objects) destination is returned to
the Message Switch, which forwards the message to the host. If no (satisfactory)
responses are received by the client's time-out period, the locate fails. The Locator
so informs the Message Switch, which passes the word back to the client.

3.6.3.4 The Host Type

The Host Type defines a set of host objects. Each host object resides on the machine
it represents, and is managed by a Host Manager on the host. Host objects provide
an addressing technique that allows system calls to conform to the standard operation
invocation protocol. Its chief advantage is that it allows host operations (i.e., system calls

146 CHAPTER 3. DESIGN

to the Security and Object Databases) to be invoked from remote hosts. The Locator
on a host uses Host operations to maintain the cache. Additionally, the Security and
Object Database operations, as described in the Descriptive Top-Level Specification, are
Host operations.

3.6.3.4.1 The Security Database The Security Database contains three tables:
an Object Table, a Type Table, and a Host Table. All of these tables are accessible
through the same interface, and an entry in any of the tables is addressed using the UID
of the object associated with the entry.

The Object Table contains an entry for each object in the Object Database of the local
host. An object entry includes the security label of the object, and a value indicating
whether the object is single-level secure or multi-level secure (MLS). The Object Table
is used by the Locator to locate an object, by the System Manager to set the security
label of the object, and by the Object Database to check that access to the object is
secure.

The Object Table also maintains a list of hosts where a replicated object is stored.
Replicated objects need to have replicated labels to ensure their continuous access. Since
it is imperative that all copies of an object's label be consistent, the Security Database
provides operations to replicate and dereplicate entries in the Object Table.

The Type Table contains an entry for each type that is configured for the local host.
If an entry for a type resides in the table, then objects of the type may be created and
accessed on this host. A type entry includes:

* the range of security labels at which managers of the type may be instantiated;

" whether a manager should be dynamically instantiated;

* whether managers are multi-level or single level secure; and

* the name of the object file that contains the executable image of its manager.

The Type Table is used by the Message Switch to instantiate manager processes
dynamically and by the Host Manager to create new services.

The Host Table contains an entry for each host in the system. A host entry contains
the security level of the host. The Host Table is used by the Message Switch to determine
if each message received has a security level in accordance with the security level of the
host that originally sent the message.

3.6.3.4.2 The Object Database The Object Database (ODB) contains an entry
for each object managed on the host. Each Object Database entry contains the stable
storage representation of the object, which only can be accessed by the manager of an
object.

3.6. DESIGN SPECIFICATION 147

When the Object Database receives a request to access the database, it first checks
that the invoker of the object is a manager of the type of object being accessed. The
ODB determines whether or not the manager manages the object's type by accessing
the Process Table entry for the manager process.

The Object Database enforces the security policy by accepting CreateODB Object,
ReplicateODB Object, RemoveODB Object, WriteODBObject and Dereplica-
teODBObject operations only from managers whose labels are dominated by the label
of the object, and ReadODBObject: only from managers whose labels dominate the
label of the object.

3.6.4 Discretionary Access Control

Access control is traditionally discretionary in nature, meaning that the privileges to
access an object may be modified in unrestricted ways by a designated group of users.
The access matrix model is used to formalize discretionary access control. Rows of
the matrix indicate accessors, columns indicate objects that can be accessed, and cells
indicate the privilege of the accessor to access the object.

Access controls can be implemented either with capabilities or access control lists
(ACLs). Capabilities are formed by grouping matrix cells by row and storing them with
the accessor. ACLs group by column and are stored with the object. The symmetry of
these mechanisms makes one approach's advantages the other's disadvantages, and vice
versa. This, in turn, tends to polarize people's views on the subject.

The capability approach allows accessors to review all of their privileges, allows priv-
ilege transfer between processes, and allows accessors to be given access privileges with
finer granularity (e.g., spawned processes can inherit a subset of capabilities; inheriting
a subset of identities usually does not make sense). Capability-based systems also com-
monly use capabilities to name objects at the system level. On the other hand, ACLs
make it possible to review all of the potential accessors to objects, makes revocation of
privileges trivial, and is the widely adopted convention for access control.

Although capability-based systems have received considerable attention in systems
research, there has been little experience with their application in distributed systems
that have received extensive use. Supporting capabilities is generally more complex than
ACLs because access rights are distributed with the clients rather than grouped where
objects are managed. Capabilities must be stored with the client and transferred to
services in a way that they cannot be forged or corrupted. It is also difficult to integrate
separately developed capability-based systems, or a capability-based system with an
ACL-based systems. This reflects the difference in the representation and interpretation
of access rights in capabilities, and the common use of capabilities for naming. It has been
observed that the ability to review who has access to information in computer systems
used by the military is far more critical than the ability to review those privileges a
particular user has. All of these factors limit the efficacy of capability-based systems for
BM/C3 applications. We have adopted ACLs for the SDOS system.

148 CHAPTER 3. DESIGN

3.6.4.1 Client Identities

A client's identity is bound to its process as part of its authentication prior to its access
of objects. In this section we describe how client identities are initialized, maintained,
and transferred.

3.6.4.1.1 Principals Clients have been defined as those entities in the system that
are capable of requesting access to objects by invoking operations on the objects. Each
client is a process that is bound to an identity. The nonvariable part of a client's identity
is called a principal. A client is only bound to a single principal at a time, and this
binding usually is made for the lifetime of the client process. For clients that represent
human users, the name of the principal corresponds to the user's name. For a client that
represents a manager, it is bound to a principal named after the manager. Principals
are first class SDOS objects, and are managed by the Authentication Manager.

3.6.4.1.2 Projects A client is generally working on a clearly identifiable activity,
and many of the objects a client uses are specifically associated with the activity. For
example, many objects are used simply for evaluating the C2 Internet experiment. The
activity may be an application (e.g., C2_Sensor), an administrative domain (e.g. Di-
vision_4), or any other organizational unit. We call the unit used to delineate sets of
client activities a project. A client representing a principal may work in several different
projects over a relatively short span of time, and other clients representing other princi-
pals may also work in the same project. A project is actually represented as a group of
principals. Projects are first class SDOS objects managed by the Authentication Man-
ager. Changing the membership of projects may change the identity of clients bound to
principals that are affected by the change.

Projects may be divided into subprojects, forming a hierarchy of projects. If a prin-
cipal is in a particular project then the principal is a member of every ancestor project
of the project. One difference is that nesting within projects is expressed syntactically:
prjA.prjB indicates that prjB is a subproject of project prjA. For example, the evaluation
subproject in C2 Internet project might be represented as the project C2.evaluation.

Although a project is a group of principals, projects can also be thought of as a way
to delineate sets of objects. For example, there are likely to be a specific set of objects
associated with the 02 Internet project that are only used within that application. Other
objects may be accessed by clients executing within many different projects. Who can
access an object is dependent on the client identities that appear on the access control

list of the object.

3.6.4.1.3 Roles Although individual object types vary, the patterns of object use
across many different types of object are similar with respect to privilege sharing and
common operations. As examples, one use of all objects is monitoring their activity,
and ReportStatus is an operation that will be defined on every object. Patterns of

3.6. DESIGN SPECIFICATION 149

resource usage are called roles. Intuitively, roles are the set of operations (possibly
across several object types) that are associated with a particular task that is performed
by many clients. Roles are not first class SDOS objects and do not require access control.

Roles are created for each object type as a (sub)set of the operations defined by the
type. By being defined on the type, roles are defined consistently across all objects of
a type. Ideally, the meaning of a role will be the same across many or all object types.
For example, a monitor role is intended to be used to monitor that status of objects,
regardless of the type of object. Defining roles consistently simplifies their use, but has
no impact on security.

3.6.4.1.4 Actual and Contextual Client Identities The principal, project and
role concepts are applied in SDOS in the form of the Client Identity (CI) that is as-
sociated with each client. This association is maintained by the manager of the client
processes, the Process Manager. The CI of a client defines its identity. Since access au-
thorization is based on identities, the CI of a client indirectly defines the set of privileges
the client has to access resources.

The CI consists of two parts: the Actual Client Identity (ACI) and a set of Contex-
tual Client Identities (CCIs). When an operation is invoked on an object, the object's
manager obtains the client's ACI and active CCI from the client's Process Manager to
identify the accessor.

The ACI consists of the principal bound to the client and a flag indicating whether
or not the client is a terminal interface process. The designation of terminal interface
processes is needed to control the invocation of direct operations (or trusted paths; see
the security policy). This attribute is set at process creation time (the mechanism for
this has not been designed).

When a client accesses an object, it acts on behalf of a principal, within a project,
and generally in a narrowly defined role. We call this information the contextual
identity of the client. One client may perform one role with respect to one project,
but a different role with respect to another project (or the entire system), all on behalf
of the same principal. Therefore, a client commonly has several contextual identities.
Furthermore, a client may act on behalf of itself (i.e., on behalf of the principal bound
to it), or it may act on behalf of another client (which could be bound to a different
principal). The CCI identifies on whose behalf and in what capacity the client is invoking
an abstract operation. A CCI is a quadruple of the following form (brackets indicate
optional fields): (Principal : Project : Role [: ObjectList]).

A special project and role ANY is defined that allows the client to act in any project
or role. Similarly, a special project and role NIL exists that prevents a process from
being a client. If an object list is present in a CCI, the client may only access the listed
set of objects using this contextual identity.

A client will have several CCIs in its CI, and all will be visible to the user (for user
processes) or programmer. A CCI allows a client to divide his activities into separate

150 CHAPTER 3. DESIGN

collections. Client contextual identities can be useful both as an organization tool and for
self protection (for example, by choosing a test project that is used to access only objects
being tested). At any point in time the client is associated with a specific CCI, the active
CCI, which is used to identify the client with respect to a particular invocation. Each
CCI entry is named, and a client is free to switch from one CCI to another by invoking
the ChangeActiveCCI operation on itself and providing a CCI name. In addition to
the ability to change their active CCIs, clients may examine and rename their CCIs.

When a client invokes an operation on an object, the active CCI at the time of the
invocation is used by the object's manager to identify the client. When an operation
is invoked, the client transfers a CCI marker indicating its active CCI to the object's
manager. This marker simply contains the name of the active CCI and is used by the
manager to obtain the client's active CCI.

The following are examples of CCI's:

(Vinter : Private): the Vinter principal working on private data.
(Vinter : C2.evaluation : Tester): Vinter working in the the C2.evaluation project as a
Tester.
(Vinter : C2.evaluation : Reader : ObjectA):
Vinter, again working in the C2.evaluation project, this time as a Reader, and only able
to access Object-A.
(I/inter : NIL : NIL): Vinter, with no project or role, and therefore unable to act as a
client.

Client identities can be used to easily represent the special SDOS users designated
in the security policy:

System Controller: ((Somebody) : System : Controller)
System Certifier: ((Somebody) : System: Certifier)
System Manager: ((Somebody) : System : Manager)

3.6.4.1.5 Initial Client Identities An initial CI is associated with each principal
object. An initial CI is a list of CCIs that can be bound to a client authenticated to
have this identity. The principal identifier appears in the principal field of each CCI
in the initial CI. Discretionary access controls on principals and projects constrain who
may add and remove entries from an initial CI.

An identity is bound to a client in one of the following ways:

" A client representing a user is given a CI based on its initial CI via password
authentication with the AuthenticateAs operation on the Authentication Manager;

" A client that is also an object manager is given a CI when it is initiated by the
kernel. A principal exists for each manager defined, and the principal name is the
same as the manager name.

" A client representing a spawned process inherits (a subset of) the CI of the process

3.6. DESIGN SPECIFICATION 151

that spawned it.

3.6.4.1.6 Proxy Client Contextual Identities Clients that are managers fre-
quently act on behalf of the clients they are serving. An example is a client that attempts
to print a file makes a request to a printer manager. The printer manager needs to read
the file. Thus, the printer manager services printer requests, but acts as a client to the
file manager. Giving the printer manager access to all files is undesirable because of
the general untrustworthiness of arbitrary managers. Proxy CIs are used to temporarily
transfer the privileges to access a set of objects to a manager. When a client invokes
an operation on an object, it can designate a proxy CCI (which may be the same or
different than the active CCI). The proxy CCI is added to the Cl of the client serving
the operation request. The manager makes the proxy CCI active when accessing objects
on behalf of the client.

CCIs that are not proxies will have a principal field value identical to the principal
in the ACI. This property reinforces the idea that a contextual identity for an executing
client is either based on an identity received from another client (a proxy) or the identity
originally bound to the client.

A client transfers a proxy CCI to a second client by passing a CCI prozy marker as a
parameter to an operation invocation. This transfer must be visible to the programmer
since the marker passed determines the (proxy) identity of the manager while servicing
the operation invocation, and there will generally be several CCIs to choose from. The
CCI proxy marker contains the following:

" The process UID of the client passing the proxy; this is used by the process pos-
sessing the proxy to (indirectly) obtain the CCI of the client.

" Encrypted in the public key of the Process Manager, the following:

- the name of the CCI that is being passed;

- the process UID of the client passing the proxy, encrypted in the private key
of the Process Manager;

- filler text, as necessary for security.

The PM public encryption key and the process UID of a client encrypted using the
private key of the PM can be obtained by a client from the PM either when the client
process is created or with the ObtainKey operation defined on each process. To make
proxy CCI transfers secure, it is necessary to encrypt them to ensure that they are not
forged or changed without detection. By encrypting the message in the public key of
the PM, the proxy marker can only be read by the Process Manager of the client that
sent the proxy. By encrypting the process UID with the private key of the PM, it is
ensured that no process can forge a proxy CCI nor dupe the PM about the process
that originally passed the CCI. Upon receiving a proxy CCI marker from an invocation,
the manager places the marker in a newly created CCI. In its capacity as a client to a

152 CHA PTER 3. DESIGN

second manager, the manager may make the proxy CCI active or transfer it to a second
manager.

Proxy CCIs never have to be returned to the client originally transferring them
because they are placed either in instantaneous managers that only serve a single client,
or in perpetual managers that are trusted to destroy the proxy markers when they are
finished using them. This is consistent with the definition of managers in SDOS.

3.6.4.1.7 Creating New Client Contextual Identities The CI can be manipu-
lated by invoking operations on the client. Operations include the ability to add a new
CCI, destroy a CCI, and change the name of CCIs. A client can create a new CCI in
several ways:

" By taking an existing CCI and restricting it. This is generally done for the purpose
of testing unreliable programs (limiting your own privilege temporarily), or because
the CCI will be passed as a proxy to another client.

" By copying a named CCI from the initial CI into the CI. This is generally done to
restore a CCI that has been previously destroyed.

" By placing a proxy CCI marker in a CCI.

A CCI may be restricted by specifying a role or the list of the objects in the CCI.
In limiting a CCI to a particular role, a client may replace a role field that contains the
ANY value with a specific role. Since modifying a CCI in this way limits how the CCI
can be used, this is an unrestricted operation to the client. A client may also attach an
object list to the end of a CCI. The object list restricts the activity of an identity to this
specific set of objects, and is also an unrestricted operation to the client.

3.6.4.2 Identification

When an operation is invoked on an object, the manager of the object is responsible
for determining if the client requesting the operation has the authority to invoke the
operation. Since authorization is based on identities, when the manager receives an
invocation request, its first action is to determine the identity of the client invoking the
operation. The identity is determined using the CCI marker sent to the manager as a
parameter of the invocation.

Upon receiving an invocation request, a manager (M) obtains the identity of the client
(C) by invoking the ShowProcessBindings operation on the client C's UID received in
the invocation request. The active CCI marker received in the invocation is a parameter
to this operation. The Process Manager of client C services ShowProcessBindings
and returns two values: the ACI and the active CCI of client C. The active CCI of the
client.may contain a proxy CCI marker. In this case, the PM invokes the ObtainProxy
operation on the process (P) that originally transferred the proxy CCI marker to client

3.6. DESIGN SPECIFICATION 153

C. Process P is identified by its UID found in the proxy CCI marker. The ObtainProxy
operation is serviced by the PM of process P. The proxy CCI returned for process P's
PM to client C's PM is then sent to manager M along with client C's ACI. A CCI proxy
marker is never replaced by the actual CCI because this would prevent the client lending
the proxy from revoking the proxy (which can be done simply by changing its name or by
destroying it). [This is an obvious tradeoff between performance and security. Replacing
the proxy CCI marker with the actual CCI would avoid the extra step to the second PM
on later uses of the CCI.]

3.6.4.3 Access Authorization

Upon receiving the identity of a client invoking an operation on an object, the object's
manager then determines whether the client is authorized to access the object. Access
is authorized by the manager providing all of the following criteria are met:

* If the operation invoked is a direct operation, as designated when the object's
type is created, the client must be a terminal interface process. This information
about a client is available in the ACI returned from the ShowProcessBindings
operation.

" If the operation may only be invoked by specific principals, the principal name
from the ACI of the client must be one of them. The ability to define the exact
principals that may access an object may also be designated when the object's
type is created. This is independent of the contents of the access control list for
a particular object. For example, only the Authentication Manager may invoke
the SetProcessBindings operation on a process object, regardless of on whose
behalf the Authentication Manager is executing.

" If there is an object list in the active CCI of the client, then the object on which
this operation is invoked must appear in this list. This requirement allows a
client's activities to be explicitly restricted to specified objects based solely on its
contextual identity.

" The CCI of the client must appear in the access control list (ACL) of the object.
This is the primary means of controlling access to objects. Unlike the first two
criteria, the access control list may change after the object is created to allow
flexibility in specifying who may use the object, in what capacity, and with what
operations.

We begin by introducing the type role associated with each type, which intuitively
corresponds to the privileges clients may have to use objects of the type. We then
examine access control lists.

3.6.4.3.1 Type Roles A list of type roles is defined for each type when the type is
created. The purpose of these type roles are to define the privileges that roles take on

154 CHAPTER 3. DESIGN

for all objects of the type. The System Control defines the type roles when the type is
created.

A type role is of the form: (Class : Role : List of operations). The list of operations
are a subset of the operations defined on the object's type, and will therefore vary
depending on the type. Roles are divided into two classes: nondiscretionary roles and
discretionary roles. Operations for which nondiscretionary (discretionary) control is
desired are placed by the System Controller in nondiscretionary (discretionary) type
roles. A role's class determines who has the privilege to place entries in an access
control list for the role; only the System Controller may place an ACL entry in the ACL
for a nondiscretionary role, and only the Controlling Group may place an ACL entry
for a discretionary role. This relationship is described in detail in the next section on
access control lists. An example of the type roles for a type are:

Class Role Operations

Nondiscretionary: Controller :ModifyNondiscretionaryACL
Nondiscretionary: ControllingGroup :ModifyDiscretionary AC L

Discretionary: Reader :Read, Display
Discretionary: Writer :Write
Discretionary: Monitor :ShowStatus
Discretionary: Owner :Read, Display, Write, ShowStatus

The type roles for a generic object might look like this:

Class Project Operations

Nondiscretionary: Controller :ModifyNondiscretionaryACL,
ModifyNondiscretionaryIACL

Nondiscretionary: ControllingGroup :ModifyDiscretionaryACL,
Modify Discretionary IACL

Discretionary: Creator :Create
Discretionary: (other roles) : (other operations)

3.6.4.3.2 Access Control Lists An access control list is associated with each ob-
ject. The ACL is used to authorize access to the object. It consists of a list of identities.
Each identity in an -CL will match one or more contextual client identities. An identity
entry is of the same form as a CCI, only without an object list, resulting in the following
form: (Principal : Project : Role). Unlike a CCI, the Principal and Project fields of an
ACL entry may contain a wild card character "*" for character matching (as in UNIX).
Note that the wild card character does not match "NIL". Examples of identity entries
are the following:

3.6. DESIGN SPECIFICATION 155

Principal Project Operations

System :Controller
Jones: C2.* :ControllingGroup

Jones: C2.* :Monitor
Andrews: System :Monitor

Vinter: C2.evaluation.* :Reader, Writer, Monitor, Owner

The meaning of the last identity entry in this example is that principal Vinter, when
working within the C2.evaluation project, or any project nested within that project, has
the privileges of an owner, a reader, a writer, or a monitor with respect to the object.

Entries in the ACL are divided into two groups on the basis of the class field of
each entry. The first two entries in the example above contain roles of the nondiscre-
tionary class, while the last three entries contain roles of the discretionary class. This
division is provided to control the modification of an ACL. Every object has two op-
erations defined on it: ModifyNondiscretionaryACL and ModifyDiscretionaryACL. The
ModifyNondiscretionaryACL operation is used to add or remove ACL entries containing
Nondiscretionary roles, while the ModifyDiscretionaryACL operation is used to add or
remove ACL entries containing discretionary roles.

This discretionary/nondiscretionary role division is consistent with the philosophy
espoused in the security policy that certain operations on an object (such as the privilege
to change who can access it) require more control that other operations. The security
policy defines the controlling group of an object as the set of users that can modify
who can access the object. The example above supports this idea by defining a Con-
trollingGroup role that allows users acting in that role to make additions and deletions
to discretionary roles. The security policy designates the System Controller as the only
user able to modify the controlling group of an object. This control is achieved in the
example above by making the ControllingGroup a nondiscretionary role, and defining
the Controller as having the privilege to modify the nondiscretionary roles.

3.6.4.4 Initial Access Control Lists

The access control list of a newly created object is determined by an initial access control
list (IACL) associated with the object's type. The IACL is intended to automatically
set the ACL of a newly created object in a way that is dependent on who its creator is
and how the object will be used.

The initial ACL consists of a set of pairs of the form (CCI guard, identity list), and
is interpreted in the following way: if the client's identity matches the CCI guard, then
add the associated identities to the ACL. The following is an example of an IACL pair
that generate the ACL above if the object were created from CCI Vinter:C2.evaluation:

CCI guard: * : C2*

156 CHAPTER 3. DESIGN

Principal Project Role

*" System :Controller
Jones: C2.* :ControllingGroup

Jones: C2.* :Monitor
Andrews: System :Monitor
creator): (creator)* :Reader, Writer, Monitor, Owner

(the (creator) value indicates that the value used is taken from the corresponding
field of the client creating the object)

The initial ACLs are part of the generic object of a type. The ability to change
initial ACLs is controlled in much the same manner as ACLs, with the identities di-
vided into nondiscretionary and discretionary roles. The Modify Nondiscretionary IACL
and ModifyDiscretionaryIACL operations are used to modify the nondiscretionary and
discretionary portions of IACLs.

3.6.4.5 Discretionary Control Assurance

Discretionary access control routines that are embedded in Cronus managers are auto-
matically generated from a type (interface) specification. In the specification, the type
developer simply provides the rights, or privileges, associated with operations. This is
used to generate a mask against which access control checks are made. The implemen-
tation of the access controls have a high degree of assurance because of their generation
from a single source (that can easily be controlled during the software development
cycle).

However, an ingenious implementor can circumvent these checks easily by having
the manager, at run time, modify the software that makes the check or the software
that sends control to the access check routine; modify the access control list or privilege
mask; or modify the client bindings obtained from the client's Process Manager. Thus,
it is difficult to protect the trusted access control check software from the actions of the
untrusted manager software since they execute in the same process address space.

One solution to this problem is provided by hardware rings. Hardware rings define
concentric circles of memory access privilege, where software executing an inner has
access to all data in its ring or any outer ring. Rings not only control data access, but
also control flow. Inner rings may not call outer rings. Outer rings issue subroutine calls
to inner rings, but only through predefined gates.

Rings can be used to protect discretionary access controls by placing these mecha-
nisms in an inner ring and the remainder of the untrusted manager software in an outer
ring. The efficacy of this approach depends on several requirements of the underlying
COS and hardware:

* There must be at least two rings available to the applicition developer across which
a manager may be configured.

3.6. DESIGN SPECIFICATION 157

9 Control flow must be supported from inner rings to outer rings. This require-
ment is not common among ring-based systems. However, techniques for initi-
ating lightweight processes from inner rings to execute in outer rings have been
developed [Schell and Tao 841.

If these two requirements were satisfied, it would allow message parsing and access
control to be placed in an inner ring. Should access control succeed, the inner-ring
can dispatch a light-weight process to execute the operation and transmit the message
parameters. When the operation completes, the light-weight process can signal to the
inner-ring software of its completion and the location of the results. Control can continue
in the inner-ring to forward the results of the invocation to the client.

Chapter 4

Formal Methods

4.1 The Formal Top-Level Specification

4.1.1 Overview

The Formal Top-Level Specification (FTLS) is a transcription into a formal language
of the design of SDOS that was developed in the previous chapter. It is an abstract
description of SDOS. Detail that was included in the functional description will generally
be reflected in the FTLS, and vice-versa. Of course, neither the functional description
nor the FTLS contain the same degree of detail that the final, coded version of SDOS
will, but each is intended to present a complete view of the system at a particular level
of abstraction.

The formal language chosen for the FTLS is Gypsy [Good et al. 78]. Gypsy is a
Pascal-style programming language in which specifications can be stated as embedded
assertions. Pre- and post-conditions for procedures and functions are particular cases of
embedded assertions, which, in Gypsy, can be exported and used in the proofs of other
procedures and functions. Gypsy, unlike Pascal, allows expression of concurrency. Con-
current procedures may communicate through shared buffers, and embedded assertions
local to each procedure may express properties of the history of communication with
each buffer.

The Gypsy specification expresses the entire SDOS as a cobegin of processes, each
process representing a single host. Hosts will then execute concurrently. Communication
between hosts is expressed as Gypsy buffers shared between them. No attempt has been
made to formally specify the network communications in greater detail, and therefore,
the semantics of Gypsy buffer operations have been accepted as part of the 'specification.

Each SDOS host is then in turn expressed as a cobegin of local processes. It is
examples of these local processes which we have included in this report. The local
processes include, at a minimum:

159

160 CHAPTER 4. FORMAL METHODS

" A kernel, composed of a number of interacting entities needed for supporting effi-
cient, object-oriented communication between SDOS entities;

* A file manager, responsible for creating the abstract type "file";

" A catalog manager, responsible for translating user-friendly symbolic names into
the unique identifiers (UIDs) which serve as names used by the system;

" An authentication manager, responsible for login and logout of users;

" A trusted interface process (TIP), responsible for the terminal interface between
the human user and the system.

The kernel shares a pair of Gypsy buffers (representing 2-way communication) with
every other process on its host. Processes other than the kernel share buffers only with
the kernel, i.e., they cannot communicate directly between themselves.

The Gypsy specifications of the FTLS are presented in Appendix A. There are
comments that accompany each FTLS component. However, since reading code, even
commented code, is difficult, we have given an informal introduction to the FTLS in
this section. Each subsection here gives an overview of the algorithm of part of the
system, discusses security tradeoffs, and informally argues that the Gypsy design is
secure. The TIP and the authentication manager are covered together in one section,
due to their close interrelation. The four subsections of this chapter, "Kernel", "File
Manager", "Catalog Manager", and "Authentication", correspond to the sections A.4
through A.7 of Appendix A. In this chapter the kernel is described first because of
its central importance, while it is listed last in the Appendix because its code must be
loaded into the Gypsy system after that of the other components.

4.1.2 The Kernel

4.1.2.1 Introduction

The kernel is the key SDOS component that is necessarily part of every host in the net-
work. We will discuss the kernel design by decomposing it into the following entities:

" Message switch
" Security Data Base (SDB)
" Object Data Base (ODB)
" Locator
" Process Manager
* Process Table

In Gypsy, the interaction between the above listed objects has not been modeled by
buffer operations. Instead the kernel is treated as an integrated unit and the interactions
are function calls. But viewing the interactions among the components as synchronous
message passing is identical to the integrated (undecomposed) Gypsy model. Each

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 161

function call and each return of control to the function's caller is considered to be a
synchronous message passing event. The synchronous message passing model is a more
versatile tool for purposes of detailing the model and hence it is the vehicle of choice for
the following sections of this report.

4.1.2.2 The Security Database

On each MLS host, there will be a collection of data needed for enforcing the mandatory
security policy. This collection is called the Security Database (SDB). A host's SDB
contains an entry for each entity residing on the host, and possibly for some remote
entities as well. The local entities that must be in the collection include all objects,
generic type objects, and all processes. The remote entities that must be in the local
SDB include some subset of the SDOS hosts. An entry in the SDB will contain:

" a security label;

* a boolean indicating whether the entity is MLS;

" for the generic object of a type: whether local managers for the type exist, whether
they are MLS, whether they are running, and where their executable code can be
found;

* for a local replica of a replicated entity: the number of replicas which exist in the
entire system.

In the actual system design the SDB may be organized into separate tables for hosts,
objects, and types, but in the Gypsy specification we have placed all SDB data in a single
table indexed by UIDs. The SDB entry associated with an entity is stored according to
the entity's UID, and the entry contains the data described above.

Although security-relevant information may also reside in other system components,
the SDB is the primary location for the information, and updates are not complete until
the SDB data has been modified.

The SDB defines the following operations, each of which is an invocation on the local
host:

1. CreateSDBEntry - generate a new, unique UID for a non-replicated entity, and
create an entry for it in the local SDB.

2. RemoveSDBEntry - destroy the entry for the given UID, including all replicas on
other hosts.

3. ReadSDBEntry - return the entry in the local SDB for the given UID to the client.

4. LocateUid - returns information pertaining to existence of the object and object
manager.

162 CHAPTER 4. FORMAL METHODS

5. ModifySDBEntry - modify the entry for the given UID and update all replicas.

6. ReplicateSDBEntry - if an entry for the given UID already exists on some remote
host, create a copy of its entry locally, and increment the global information on
the number of replicas.

7. DereplicateSDBEntry - if an entry for the given UID exists on the local host, and
the entry is replicated, destroy the local entry and decrement the global information
on the number of replicas.

A UID will exist in the SDB if and only if at some previous time that UID was
created or replicated on this host. Concurrency control for replicated UIDs has been
largely removed from the SDB and placed into other components. Certain assumptions
also simplify the concurrency control problem. As required explicitly in the formal
model, concurrency control must ensure that the label in an SDB entry reflects any
change to its value initiated by events which could potentially influence the present
value. Replicas on different hosts therefore must have the same label if the most recent
ModifySDBEntry operation has been propagated to every host with a replica of that
SDB entry. The following assumptions and requirements are sufficient:

* Concurrent CreateSDBEntry invocations cannot conflict, since the UIDs they cre-
ate are assumed to be different. The method used in Cronus for ensuring this is
to include a field in each UID which encodes the name of the host on which the
UID was created; this method is adopted for SDOS. Therefore concurrent creates
must produce different UIDs. A UID containing host field H does not necessarily
reside on the host named by H, since replicate and dereplicate operations may
have caused its migration.

" The message switch must ensure that each ModifySDBEntry operation, and in fact
each operation updating replicated information (Remove-, Modify-, Replicate-, and
DereplicateSDBEntry), is propagated to all hosts with replicas of the UID. This
includes storing for future delivery all updates for currently unreachable hosts.

" Clients invoking ModifySDBEntry operations must ensure that they do not conflict
with other modifications to the SDB. For example, it is the responsibility of the
System Manager to ensure that no two ModifySDBEntry invocations made by him
for the same UID are in progress simultaneously. Other than invocations made
by the System Manager, ModifySDBEntry invocations by different kinds of client
should not arise, since these kinds of clients are few in number, and they update
disjoint sets of SDB entries. For example, updates by the authentication manager
for terminal interface processes (TIPs) can never conflict with updates of type
information by the process manager, since no type object is a TIP.

" The other operations which can update replicated entries (Remove, Replicate,
and Dereplicate) do not conflict since their updates commute. For example, if
ReplicateSDBEntry and DereplicateSDBEntry are concurrently invoked on UID

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 163

U on different hosts, every host will eventually be required both to increment and
decrement its replica count in the SDB entry for U, resulting in no change. Such a
simple minded scheme has limitations. If hosts on which the copies exist derepli-
cate simultaneously, Dereplicate will have the same effect as a Remove operation.
Any manager whose operations may depend on the intermediate results of the
commuting operations must enforce its own concurrency control on the use of the
SDB operations.

The data in different SDB entries may be of differing sensitivities, and the SDB
will respond to requests for service at many security levels. Therefore it must be an
MLS entity. We considered several schemes for implementing security in the SDB. The
schemes differ according to whether the UIDs and the entries associated with them
are public information. A secure implementation of the SDB will be described for two
main cases. As a first approximation to demonstrating that each implementation is
secure, we will associate, a level with cach piece of data in the design, and enforce Bell-
LaPadula-like rules for flow of data. This approach is useful for discussion; a more
precise demonstration of security will be given later.

The following discussion gives rules for controlling those information flows through
the SDB which would violate mandatory security. However, all of the operations on
the SDB will additionally be constrained for other reasons, e.g., by rules of the config-
uration policy. In both principal schemes, changing the data in the SDB has security
consequences other than just information flow: for example, security is violated if an
UNCLASSIFIED client is able to rewrite every entity's label to UNCLASSIFIED. In
either scheme, the following additional rules hold:

" An existing SDB entry may only be modified by the System Manager (to change
labels manually), by the System Certifier (to make a single-level entity MLS), by
the Authentication Manager (to change the label of a terminal interface process) or
by the process manager (to change current information about generic type objects).

" An SDB entry may only be removed by the object database or by the process
manager, in which cases the SDB operation is the by-product of the complete
removal of some entity from the system.

* An MLS entity may only be created by the System Manager (for example, to add
new MLS hosts to the system), or by the process manager (to start up multi-level
processes).

In each scheme, we sought to make the information-flow security valid independent of
assumptions about the SDB's clients and about the configuration policy. This maximizes
the independent verification of components of the system.

4.1.2.2.1 Scheme I Suppose that the levels associated with the existence of an
entity, and the security data in the SDB for the entity, are both HostLo, i.e., the meet

164 CHAPTER 4. FORMAL METHODS

of all levels in this host's label. (We assume that HostLo itself is a level in the host's
label). In other words, knowledge that some UID exists, knowledge that the level of that
UID is 1, knowledge that the UID is replicated, etc., are all publicly available. We see
immediately that never will readin6 any data in the SDB compromise information, and
that writing the SDB may only be initiated by requests at HostLo. Rejecting either
request on the grcunds that the UID does not exist will not disclose any information
which is not already public.

To prevent the system from becoming unwieldy, it must be possible to create entities
via requests at any arbitrary level. However, if create requests are permitted at some
level I which is greater than HostLo, then information of sensitivity I will be written
into the publicly available attributes of existence and level. This is a channel through
which information can be downgraded. We can make the channel unusable, though, by
requiring the following:

" A request can never be made to create a particular UID. Each request to create a
new entry in the SDB generates and returns a UID not in use. The pool of possible
UIDs is assumed to be effectively infinite, so that requests to create UIDs are never
denied. Then a requestor can never learn about previous create operations at other
levels by being told that "UID already exists".

" New UIDs are generated randomly, or pseudo-randomiy with an algorithm which
cannot be reproduced by software outside the kernel. The algorithm may be an
encryption using a hidden key. Then a requestor can never deduce from the UID
returned in response to a create request which other UIDs are currently in use.
Once a UID is removed from the SDB, it can be reused in another create operation.
But, it is no more or less likely to be used than any other available UID. The
mechanism that generates the UID has to intervene this regeneration in some
pseudo-random fashion with generating fresh UIDs so that no client can predict
what UID would be created next.

These two requirements ensure that although the action of the SDB during a create
operation will depend on previous creates at higher levels, the dependence cannot be
exploited to downgrade information.

A request to remove a UID entry from the SDB, however, will also take information
at the level of the request and put it into the publicly available existence and level
attributes. Because the UID being removed must be specified in the request, this opens
an exploitable channel: a pattern of existing UIDs can be selectively removed by a high-
level Trojan Horse, and this pattern will be publicly visible. To prevent this, we must
require all remove requests to be issued at HostLo.

Similarly, requests to replicate or dereplicate SDB entries must both read and write
the SDB. Therefore, these operations must also be initiated at HostLo. It is these
severe restrictions on modifying the SDB entries which form the principal drawback of
this scheme.

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 165

4.1.2.2.2 Scheme II Rather than treat the existence of an entity and its SDB entry
as public, in this scheme we treat them as potential containers for sensitive information.
We will treat each entry as though it might potentially hold information at any level
accessible to the entity with which it is associated.

An arbitrary label may be either single- or multi-level. For any label, define two
levels: the meet level, which is the greatest level dominated by every level in the label,
and the join level, which is the least level dominating every level in the label. For a
single-level entity, its level equals both its meet level and its join level. In this scheme,
the infc:mation about an SDB entry is as sensitive as the entity's meet level. Therefore,
it will not be publicly available in general.

Under scheme II, there is a clear problem. The existence of higher level objects
cannot be revealed to lower level clients. How then can a lower level client invoke an
operation on a higher level object? For example, a secret client wishing to write to a
top-secret file must first know the file's UID. But the fact that the file is in existence is
top secret information. Each lc al SDOS may be able to hide this fact, forcing the client
to invoke the "write-up" operation blindly. However, a DOS which does not perform
unnecessary operations will be forced to reveal the existence of the file when forwarding
the "write-up" operation to the manager on the host on which the file resides. (see
section 4.1.2.5).

The solution we have chosen for all invocations involving such "up" operations is
for the client to set a bit in the message indicating to the local message switch that
this message is to be treated as an "up" operation. The message switch would then
acknowledge receipt of the request by the generic reply "will dc my best". The message
switch, would ensure that the client receives no other acknowledgement which would
divulge information about the existence of this higher level object, and having located
the object and determined its level from the SDB, would proceed with the invocation as
if it were at the level of the object itself.

As in Scheme I, we will assume that the pool of UIDs is effectively infinite.

The basic SDB operations are implemented as described below. In this scheme, a
distinction must be made between cases where the "up" bit is set and otherwise. Also
we will talk of "dominates" as being decomposable into a two parts: a striztly "greaor
than" part and an "equals" part.

1. Create - The creator supplies the label of the new entity as a parameter. The
create request will fail only if the level of the invocation is not dominated by the
meet level of the new label. This reveals no information, since the client already
knows both the level of the invoke and the label of the new UID. In all other cases,
the create operation succeeds, and returns a UID not currently in use. The UID is
chosen randomly or pseudorandomly as in Scheme I, so it reveals no information
about previous create invocations. The label recorded in the SDB is the label
supplied by the client. The "up" bit is of no relevance.

166 CHAPTER 4. FORMAL METHODS

2. Remove - If the entity exists and its meet level equals the level of the invocation,
or if the meet level dominates the level of the invocation and the "up" bit is
set, the SDB entry is in fact removed and the invocation returns a successful
acknowledgement. Otherwise, the invocation fails. If the entity exists and if the
level of the invocation is greater than the entity's meet level, the error message
"no permission" is returned. In this case, the client can potentially know whether

this UID has been removed and therefore learns nothing when the error message
implies that it still exists. If the entity does not exist or its existence should not
be reveaied, an error message "entity does not exist" is returned.

The level of the reply for this and the remaining operations is determined as follows:
if the "up" bit is not set, or the error is the case of "no permission", the reply is
at the level of the invocation. If the "up" bit is set and the error is the case of
"entity does not exist", the reply is at SysHi. Otherwise, it is at the level of the
object.

3. Modify - The security restrictions in this case parallel those for the remove oper-
ation. Of course, there are added configuration rules to be enforced such as: only
the system manager and the authentication manager can successfully invoke this
operation.

4. Read - If the entity exists and either the level of the invocation dominates the en-
tity's meet level, or the "up" bit is set and the meet level dominates the invocation
level ("read-down") the operation succeeds returning the SDB entry. In all other
cases, either the entry does not exist, or its existence should not be revealed, the
operation will fail with an error "entity does not exist". From this message the
client cannot deduce whether the entity does not in fact exist, or whether it has
been previously created at an inaccessible level.

5. Replicate or dereplicate - The security restrictions in this case parallel those for
the remove operation. If "replicate", the UID must not exist locally; if "derepli-
cate", it must exist locally else the invocation will fail with the error message "no
permission". If the UID does not exist to be replicated, or its existence should not
be revealed, the invocation will return an error "entity does not exist".

6. LocateUid - The security restrictions for this operation parallel those for ReadS-
DBEntry. The operation differs from ReadSDBEntry in the fact that it returns
existence information about the object and an object manager capable of servicing
the request. Capability is determined 1by the level of the object manager with re-
spect to the level of the object and the level of the invocation. Single level object
managers must be at the join of the object level and the invocation level. MLS
managers must span the level of the invoke and the level of the object. Locate
operations, though primarily interested in the object's location, would use the ad-
ditional information on object managers as an aid in optimizing the choice of a
host to service a particular invocation on the object.

One disadvantage of Scheme II is that the error message "does not exist" does not

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 167

always mean that an SDB entry does not exist. It may be that the entity did exist
and that either the "up" bit was not set in the invocation or the entity's level was
incomparable to that of the invocation. Also all 'up" operations are totally blind.
However, operations conducted entirely at the level of an entity will proceed exactly as
though there were no MLS constraints on the system.

A more serious problem arises in sending a message to an entity at a higher level but
not on the local host. The remote entity cannot normally be located by broadcasts of
messages at the client's level, since the remote SDBs will claim the entity does not exist.
Therefore the "up" bit has to be set for the locate. But, if the remote entity's level is
higher than the maximum level of the client's host, its location can never be securely
found because the client's host cannot handle the reply from the Locate operation.

Therefore, there is a trade-off between Scheme I and Scheme If: either deleting will be
an operation which must be invoked at the lowest security level, or special features must
be introduced to implement "up" operations. The discussion of the locator in section
4.1.2.5 shows that Scheme II is workable even for the "up" operations. Therefore, our
treatment of other kernel components will assume that Scheme 1I is being used, as we
believe its problems are easier to live with than those of Scheme I.

4.1.2.2.3 Alternate Schemes There are alternatives both to Scheme I and Scheme
II. Each alternative has drawbacks which we felt made them unsatisfactory.

One approach is to treat the data in an SDB entry as though it were as sensitive
as the request to create it. This is a more "accurate" approach than Scheme II, since
in fact the creator of a UID knows that the UID has existed at some time, even if the
entity it names is classified at a higher level. For example, client C at level c may create
object 0 at level o, where o dominates c. The fact that 0 exists at the moment of its
creation is information at level c, even though the content of 0 is information at level
o. Scheme II effectively upgrades the level of the SDB entry, and permits higher-level
clients to remove 0. Therefore, in Scheme II, C cannot know in the future whether 0
exists.

This alternative approach requires that the SDB remember the level of the creator of
each entry, since it may be different than the level of the entity itself. The creator's level
may be stored either in the SDB, or perhaps as part of the UID itself. This approach
is feasible for implementing security. However, it entails extra storage requirements for
the creation levels. It also has the same problem with "up" operations as Scheme II, if
it is assumed that UIDs of entities might be used by clients at levels not dominating the
creator's.

Another alternative seeks to avoid the drawbacks of both Scheme I and Scheme II, by
using any of several hybrid approaches: Let the existence of a UID be public information,
as in Scheme I. This allows locates to succeed always. Let other data associated with
the UID, such as level, and/or replication count, and/or the existence of any ODB entry
for the UID, be kept at the entity's level. Then this data can be deleted at the creator's

168 CHAPTER 4. FORMAL METHODS

level, saving storage space, even if the UID itself cannot.

The "advantages" of these hybrid alternatives are deceptive. First, they make it
possible to locate UIDs which are no longer associated with any entity. Attempts to fix
this by creating new public attributes to indicate "has been deleted" (basing locates on
existence of an ODB entry, for example, rather than the SDB) reintroduce the difficulty
of Scheme I: deletes cannot be invoked at the entity's level. Second, replicate and
dereplicate operations, which must both read and write components of the SDB (and
ODB) entries, cannot be carried out at a single level. Therefore, these hybrid schemes
are unworkable.

In yet another variant, the client may choose -hether a new UID being created is
public or classified at the level of the entity. So some SDB entries are treated as in
Scheme I, some as in Scheme I. This variant allows locates for "write-up" operations
on public UIDs to proceed entirely at the level of the invocation. However, since some
UIDs may be classified, a mechanism for handling locates in Scheme II must still exist,
and because it cannot be known in advance whether a particular UID is public, that
mechanism will be invoked every time a UID cannot be located at the client's level.
This variant offers some small advantage, but because it greatly complicates the locate
algorithm, we have not considered it further.

4.1.2.3 The Object Database

The object database and manager (ODB) implements an internal representation of data
objects. This internal representation is used by many of the SDOS managers to create
their own abstract data types. The ODB keeps the data object representations on stable
storage, and therefore must use the services provided by the host's COS. This interaction
with the COS is not explicitly represented in the Gypsy specification; rather, the stable
storage is represented in the specification by local variables.

To maintain security, the ODB must manipulate the contents of the SDB. The SDB
is also part of the kernel, and so the ODB may make direct calls to it. The ODB uses
the SDB to record a security level for every object in the ODB; this level represents the
sensitivity of the object. We will assume that no object in the ODB has a label which is
multi-level. Multi-level objects, such as the SDOS catalog, can be constructed by MLS
managers, but the kernel will not provide any special support for them.

The ODB implements seven operations. For those operations which never involve
potential "write-ups" to the ODB, success will depend on whether the appropriate SDB
operation will succeed when invoked at the level of the ODB's client. In these cases,
security is straightforward, as all messages will be passed at exactly one level and will
never interact with other invocations. On the other hand, operations which may require
a "write-up" to the ODB (WriteODBEntry, RemoveODBEntry, CopyODBEntry), will
need to know whether a UID exists at all, not just whether it is visible at the client's
level. Therefore, since SDB security Scheme II is assumed, these operations will be
required to set the "up" bit in the ReadSDBEntry invocation and proceed with the

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 169

remainder of the invocation at the level of the reply from the SDB. Note: the ODB will
set the "up" bit in its communications with the SDB only if the client has set the "up"
bit in the original invocation. Security depends on the ODB not revealing any more
about SDB entries than the SDB itself would if queried at the client's level.

Since ODB operations generally make secondary invocations on the SDB, we will
distinguish the original invocation by referring to its level as the client's level.

1. CreateODBEntry - create a new UID of a particular type, and return its UID to
the client. This operation invokes Creat'eSDBEntry at the client's level and with
the same parameters. It succeeds if and only if the SDB invocation does, and
creates a local ODB entry.

2. RemoveODBEntry - destroy the data associated with the given UID. This opera-
tion invokes ReadSDBEntry at the client's level. The "up" bit is set if the client
had set it in the original invocation. If the object's level equals the level of the
successful reply from the SDB, the ODB entry is deleted. If the SDB entry is repli-
cated, then RemoveSDBEntry is invoked locally at the level of the SDB's reply and
RemoveODBEntry is invoked on all other hosts, else RemoveSDBEntry is invoked
locally. If the client's level is strictly greater than the object's, the invocation re-
turns an error. Otherwise, if the object does not exist or its level is incomparable,
the invocation returns an unsuccessful acknowledgement "object does not exist".

3. WriteODBEntry -associate new data with the given UID. The security restrictions
in this case parallel those for RemoveODBEntry.

4. ReadODBEntry - return the data associated with the given UID to the client.
ReadSDBEntry is invoked at the client's level. The "up" bit is set, if it is set
in the original invocation. If the client's level dominates the level of the SDB's
successful reply, then ReadODBEntry will succeed, and data from the ODB entry
is returned to the client at the level of the SDB's reply. Otherwise, the client's
invocation returns an error.

5. CopyODBEntry - copy the data associated with the given object into another
object. This operation is provided to reduce the number of message exchanges be-
tween the kernel and the various object managers. Suppose it is invoked by a client
at level c with UID U, as the source and UID U2 as the target. ReadSDBEntry
is invoked first at the client's level for UID U2 . The "up" bit is set if the client
had set the same in the original invocation. The remainder of the transaction is
at the level of the reply from the SDB. Upon successful return from the SDB,
ReadSDBEntry is invoked on the SDB for UID U1. The CopyODBEntry invoca-
tion returns an error if and only if either of the ReadSDBEntry invocations fail
or 11 strictly greater than 12, or c strictly greater than 11 or c strictly greater than
12. The error message is at the level of the client's invocation. On the other hand,
the transfer of data from U1 to U2 actually takes place if both source and target
exist and 12 dominates 11 and 11 dominates c. Note that the "up" bit must be set

170 CHAPTER 4. FORMAL METHODS

by the client in the original invoke to exploit the strictly greater than component
of dominates.

6. ReplicateODBEntry - replicate the ODB entry associated with the given UID.
ReplicateSDBEntry is invoked at the client's level. The "up" bit is set if the client
had set the same on the original invocation. If this fails, the error is echoed to the
client. Else, an ReadODBEntry is broadcast at the level of the SDB's reply. The
reply to the ReadODBEntry is then used to create a local ODB entry. A successful
acknowledgement is returned at the level of the SDB's reply.

7. DereplicateODBEntry - dereplicate the data associated with the given UID. DeRepli-
cateSDBEntry is invoked on the SDB at the client's level. If this returns success-
fully, the local ODB entry is deleted and a successful acknowledgement is made
at the level of the reply from the SDB. Else the error message from the SDB is
echoed to the client.

The ODB enforces no concurrency control. Ensuring that different replicas of an
object are consistent is the responsibility of the object's manager.

4.1.2.4 Message Switch

4.1.2.4.1 Overview The Message Switch is the component of the kernel responsible
for routing messages in accordance with the security policy. The Message Switch has
the same security label as the host on which it resides and is an MLS entity if and
only if the host is an MLS entity. Messages could be of three types: 1) Direct IPC, 2)
Invocation of abstract operations on objects, and 3) Response to messages either of the
earlier types. The kernel also supports a multicast operation; multicasting is sending a
message to many hosts (that are candidates by some evaluation scheme) in the system.

4.1.2.4.2 Routing The Message Switch, on receiving a client's request, does the
following:

" By interaction with the Process Table (port information), determines if the request
is local or external.

" If local then,

1. decodes the incoming message to determine the client UID and the level of
the request.

2. Client processes cannot be trusted to correctly report their levels or even their
UIDs in the appropriate message fields. So the message switch has to check
the validity of these fields. The correct UID can be determined when the
Message Switch reads the port information in the Process Table. The correct
label can be determined from the SDB. The Message Switch has the option
to either correr, the wrong fields and proceed with the invocation or discard
that invoke request. Since the relative trade-offs are unclear, we have chosen

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 171

to discard the incorrect invoke. For non-local messages, it is assumed that
the remote message switch has already established the client's credibility.

The Message Switch checks with the SDB to determine if the level of the
client's request is legal. This is accomplished by an exchange of messages
with the SDB. The SDB has the same label as the Message Switch. The
request to read the SDB is at the level of the client's request to the Message
Switch.

Case 1 SDB returns an error or true level is not the level reported in level
field of the message.
No action is taken on behalf of this invocation.

Case 2 SDB returns OK and true level is the level reported in the level field
of the message.

As outlined earlier, the messages to be routed could be direct IPC,
invocation of abstract operations on objects or responses to the same.
The distinction is detected by the Message Switch by examining the
control field of the message. The three scenarios are as described
under:

Scene 1: Invocation on objects
If the "up" bit is set then the message switch replies immediately
to the client. The reply is the generic acknowledgement "will do my
best". In either case, the Message Switch determines (by checking
with the SDB) if the object is available locally. If so, the UID of the
manager for the type of object is determined (from the SDB). If the
manager is not active (determined by interaction with the process
table) then one is activated (by an invoke to the process manager).
The manager is either MLS (includes the level of the client and object)
or single level at the level of the invocation. Note: if the "up" bit
were set, the invocation would be at the level of the reply from the
SDB (which would be the level of the object; see section 4.1.2.2 on
the Security Database for details) and not at the level of the client's
invocation. (Note: Object managers are in general untrusted pieces
of code. If the level of the client's request is less than the level of the
object, a single level object manager at the object's level would not
be able to respond to the client. This is the critical check on the "up"
operation and explains the need to make invocations at the level of
the object instead of the level of the client's invocation. So the only
acknowledgement that a client can get is the generic reply from the
Message Switch.) If the object is not available locally, the Message
Switch transfers control to the Locator to determine the location of
the object.

Scene 2: Direct IPC
The messa,. switch by checking with the SDB/Process Table deter-
mines if the process is running locally. If the process is available
locally, then its level is determined (from the SDB). If the level of the

172 CHAPTER 4. FORMAL METHODS

destination process dominates the level of the message, the message
is routed to the destination process. Else an error message 'object
does not exist' is returned to the sender. If the process is not run-
ning locally the Message Switch transfers control to the Locator to
determine the location of the object.

Scene 3 Responses to invocations
The only difference between this and the previous scene is that the
message switch assumes (by virtue of the control field) that the des-
tination address is available. Hence locates are not necessary. The
messages are directly routed to the destination process. The level of
the destination process must dominate the level of the message.

a If not local then,

1. Determines the level of the message.

2. If the level is not within the set of permissible levels of the Message Switch
and cannot be upgraded to be with the set, no action is taken on behalf of
that message.

3. If the level is within the set of permissible levels of the Message Switch or
has been upgraded to be within the set, the message is routed to the appro-
priate local component, either within the kernel, or a local process known in
the Process Table. (The external messages may either be invokes, IPC, or
responses to invokes routed to local processes as under the local case).

4.1.2.4.3 Multicast Details The issue of interest in the Multicast operation is the
level at which the Message Switch broadcasts the Locator's request to locate an object.
The situation of interest is easily demonstrated by an example. Let A and B be two
hosts on the network. A client on host A at level a wants access to object 0 at level
b. Now, host A is an MLS host, but host B is a single level host at level b. Further,
let b not dominate a. If object 0 is not on host A then the Locator on host A has to
broadcast a locate message. Now what should the level of the broadcast be? It cannot
be a because host B can only handle level b requests. If the broadcast is at b, then users
at level b can potentially determine a level a intent of interacting with object 0; which
renders the system insecure. The problem is best resolved by the following scheme:

* The multicast messages always go out at the level of the invocation.
* The set of hosts capable of receiving the invocation is determined. This is the

target set for the multicast.
" If no host on the system responds positively to the request (single level hosts not

at the level of the request would not respond at all) then an error message is sent
to the client. A more elaborate scheme could call for the locator to determine
the client's principal and invoke a potentially insecure locate at the principal's
discretion.

Under Scheme I, discussed in the section on the Security Database, LocateUid in-
vocations would fail to locate on remote hosts if the level of the object is higher than

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 173

the level of the local host. See section 4.1.2.5 on the Locator for more details.

4.1.2.5 Locator

4.1.2.5.1 Overview The Locator is responsible for locating UIDs that are not avail-
able in the local host (either the generic type is not supported, or the object does not
exist). Locating an object means determining the UID of a host whose SDB has an entry
for the object in question. When the Message Switch determines (by interacting with
the local SDB) that the object is not available locally, it sends a request at the level of
the original invocation to the Locator.

The Locator has a local cache where results of previous locate requests are stored.
If an entry is found in the cache, then the Locator returns the corresponding host UID
to the message switch. The level of the reply is that of the Message Switch's request.
If there is no entry in the cache, the Locator sends a multicast request to the Message
Switch. The "up" bit is set if the client had set it in the original invocation. The abstract
operation invoked is LocateUid. This is serviced by the SDB's in the hosts targeted for
the multicast. The level of the invocation is the level of the client's request. The positive
responses to the multicasts are at least at the level of the object. (see section 4.1.2.2
for details of LocateUid operation.) These are relayed to the Locator by the message
switch. Since more than one host could positively acknowledge the broadcast request, 1

the Locator collects responses till it finds a host that meets a minimal criterion for being
the candidate. A likely criterion could be that the object and the manager are both
available. It then makes an appropriate entry in the local cache. (See section 4.1.2.5.2
for cache details.) The host UID is then sent as the reply to the Message Switch. The
level of the reply is the level of the relay from the Message Switch.

4.1.2.5.2 Cache Details The cache is an MLS entity. Each entry in the cache (the
object UID in question and the UID of the host which met the criterion described in the
previous section) is at the level at which the reply to the LocateUid invocation for that
particular object. Suppose, for example, that Client A at level a tries to access object
B at level b. Object B is neither available on the local host nor is there a cache entry
for it. Hence a LocateUid broadcast is made. On receiving an acknowledgement that
meets the set criterion a cache entry is made. Let the level of the reply be r. The cache
entry for object B is at level r. Now, from the semantics of the LocateUid operation
(see section 4.1.2.2 on the Security Database) it is clear that r is a if a dominates b, else
r is b.

If there is a subsequent request by client C at level c to access the object, the response
would depend on the relation between c and r.

case 1: c dominates r

'The multicast operation has the option to force every host which receives the broadcast to reply to
the request.

174 CHAPTER 4. FORMAL METHODS

In this case the request at c can read the cache entry at r for object B. Therefore, there
is no need to multicast a request to other hosts. The Locator would return the host UID
on which object B exits.

case 2: c does not dominate r
The request at c cannot read the cache entry at r for object B. Therefore the Locator
would have to go through the broadcast procedure outlined earlier.

Explanation:
The SDB does not give out existence data at any level, so neither should the cache. If
the cache data were stored at the level of the object without consideration to the level of
the invocation, then information about whether locates were needed or not can leak out
in the ordering of responses to invocations. Since a cache entry has been made, future
operations on that object would be handled faster than ones without cache entries. Given
assumptions about handling of messages by hosts, this timing channel can be converted
into a constraint on sequences of replies. The covert channel is detailed in the following
example: As in the previous example, client A at level a accessed object B at level b on
a remote host. A locate operation was performed and the cache entry for object B was
made at level b. There is a subsequent request by client C at level c to access object
B. Further let level c dominate level b and level c not dominate a. Now clients at c can
potentially read SDB entries at level b. Hence they know that object B does not reside
on their local host. Client C at level c sequences the invocation on object B with one
on object BI (which he knows is on the local host). Client C has also determined (by
looking over previous histories) that there have been no requests at levels dominated by
c to access object B. Also all hosts on the network behave deterministically, in handling
requests in the order they were received. Now studying the order of the responses to two
invocations client C can infer an earlier invocation on object B at a level not dominated
by c.

A similar covert channel can be demonstrated for cache entries made at the level of
the invocation without heed to the level of the object.

Therefore cache entries should be labeled at the join of the invocation level and the
object !-vel. This is precisely the level of the reply from the LocateUid operation.

4.1.2.5.3 Migrating Objects If an object has migrated since the last locate, then
the cache information will be faulty and an invoke based on this information will fail.
The failure will be thrown back to the initial message switch, which in turn would force
a broadcast to locate the object. The cache may contain several entries at different
security levels for a single object. An optimum protocol has to be set up to read the
cache to determine the location of the object (this could involve time stamps, weights to
different levels of information, etc.) Also, once a new location for the object M has been
determined, say by invoke at level k, then all previous entries in the cache for object M
that dominate level k must be deleted. We have not pursued this any further.

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 175

4.1.2.6 Process Manager

4.1.2.6.1 Introduction The following operations are handled in the process man-
ager to provide the needed mechanisms to create and kill processes and also to modify
their attributes.

" CreateProcess

" KillProcess

" ChangeActiveCCI

" DetermineClient [d

" ShowProcessBindings

" Set ProcessBindings

" ObtainProxy

Process bindings for MLS process are stored for every level that the process is active.
Therefore requests to read or modify the process bindings would be treated as requests
on a single level entity.

4.1.2.6.2 CreateProcess Rule governing CreateProcess operations:

e Client A at security level a can create a process B at security level b if and only if
meet level of b dominates a.

An error message is returned, at the level of the invocation, if violating the rule is
attempted.

The client requesting to create a process cannot pick its UID, as discussed in the
section on the Security Database. The Process Manager does the following as part of
the CreateProcess Operation: 1) issues a CreateSDBEntry request (at the level of the
invocation), which in turn makes updates to the SDB and 2) makes an entry in the
Process Table.

4.1.2.6.3 KillProcess Rule governing KillProcess operations:

e Client A at security level a can delete a process B at security level b if and only if
meet level of b dominates a.

176 CHAPTER 4. FORMAL METHODS

To service the request, the Process Manager does the following as part of the Kill-
Process operation: 1) issues a DeleteSDBEntry request (at the level of the invocation),
which in turn updates the SDB and 2) updates the local Process Table. The "up" bit is
set in the invocation to the SDB if the client had set the same in the original invocation.

The level of the reply from the SDB is the level at which the entry is made in the
Process Table. If the SDB returns an error, the error is echoed to the message switch. If
the "up" bit were not set by the client, the error message would reach him. (see section
4.1.2.4 for details of "up" operations).

4.1.2.6.4 ShowProcessBindings Rule for ShowProcessBindings operations:

Suppose that client A at level a invokes an operation on object B. Let MB be the
object manager for B.

9 Process MB can invoke a ShowProcessBindings on Process Manager for process A
at any level that dominates the level of process A.

The rationale for error messages is similar to the instances of ReadSDBEntry opera-
tion. A low level invoke to read bindings of a higher level process would lead to an error
message 'process does not exist'.

The operation essentially involves reading the process table entry for the client A
process. Since the entry for client A is at level a, the level of the invocation should
dominate the level of the entry, for the read to be secure.

A process MB, therefore, can issue a ShowProcessBindings invocation on the process
manager of client A at any z that dominates a. If MB invokes the operation on its own
initiative, then the level of the invoke should dominate the level of the client A. The
Process Manager's reply is at the level of the process MB's invocation.

The "up" bit has no significance in this operation.

4.1.2.6.5 SetProcessBindings Rules governing SetProcessBindings operations:

o Only the System Manager and Authentication Manager can invoke this operation.

* The level of the process should dominate the level of the invocation.

Attempts to violate the above rules would result in an error message.

Since this is a basically a write operation, the level of the entry should dominate
the level of the invocation. The Authentication Manager and System Manager can,
therefore, issue a SetProcessBindings request at a level that is dominated by the level
of the client process. The reply from the Process Manager is at the level of the client
process.

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 177

To exploit the "strictly greater than" part of dominates the "up" bit will have to be
set in the invocation. The reply from the Process Manager can never reach the process
making the invocation unless it were MLS.

4.1.2.6.6 ChangeActiveCCI Rule governing ChangeActiveCCI operations:

* Client A can invoke a ChangeActiveCCI operation on itself at its own level.

All other attempts would result in an error message.

4.1.2.6.7 ObtainProxy Rule governing ObtainProxy operations:

e Process Manager X can invoke a ObtainProxy operation on the Process Manager
of process A at a level that dominates that of process A.

All other attempts would result in an error message 'process does not exist'. The
rationale for this is same as discussed for the ReadSDBEntry operation in section 4.1.2.2.

Client A at level a invokes an operation handled by manager MI. M1 in turn has to
request services of manager M2 to complete action on the invocation. Now manager M2
needs to determine the CCI of client A in order to enforce discretionary access controls.
Client A has pasd a proxy marker to manager Mi which has been added to the
manager's CCIs in the Process Table. This marker is passed as Mi's active CCI marker
to manager M2. Manager M2 invokes ShowProcessBindings on the Process Manager
for M2 with the CCI mp.rker as a parameter. Process Manager for M2 in servicing the
request determine!s that th- CCI is a proxy and therefore issues a ObtainProxy operation
on the Process Manager for client A, which in general could be different from the that
of MI. (client A's UID and the CCI marker are visible to M2's Process Manager.)

It is true that the operation of ObtainProxy would succeed at any level that domi-
nates the level of the client A. But there is nothing to gain by making this correspondence
different from level of the invoke. In fact, it would cause problems of "write-down" when
replying to the client. Therefore, it is more prudent to have all exchanges at the level
of the client's request.

4.1.2.7 Process Table

The process table is the data structure maintained by the process manager to store the
process bindings for each active process on the local host. The table also has information
about the assignment of ports on the local host for processes to communicate through.

The level of all process bindings information is at the level of the process. The
process table, therefore, is an MLS entity. As stated earlier, for MLS processes, there

178 CHAPTER 4. FORMAL METHODS

will be separate entries for each level at which the process is active. The port assignment
information is HostLo.

The Process Manager accesses all other information in the table in response to invo-
cations by other processes. (These are routed through the message switch).

4.1.3 The File Manager

4.1.3.1 Introduction

This section serves as an informal but exact description of the multi-level-secure file-
manager.

The operations handled by the file manager are
" Openfile o Closefile
" Createfile * Deletefile
" Readfile o WriteFile

The possible access modes are read, write and readwrite. Writes are exclusive2 , but
reads are not.

In what follows the access mode write may be a blind write. This depends on the level
of the client and the level of the file that he is writing into. The file-manager receives
invocations at the level of the object, even though the original invocations may have
been at a lower level with the "up" bit set. (See section 4.1.2.4 for details of Message
Switch mediation for "up" operations). In these cases even though the file-manager
acknowledges completion of the task, the client never learns about it. (The action of the
file-manager would amount to a write-down which would be a violation of the security
policy and hence would be disallowed by the message switch). Also, since the level of
invocations on the file manager are at least at the level of the object, readwrite and write
access modes will be governed by the same security considerations.

Write encompasses both overwrite and append. The ability to overwrite introduces
integrity issues which can often be handled by assigning integrity levels to clients and
objects. The security ard integrity levels have been amalgamated in the security policy
to form one set of levels. The terms 'level' and 'security level', used interchangeably in
this section, refer to this amalgamated level. Discretionary access controls may also be
used to alleviate these integrity problems.

The operation of read and write should be preceded by opening the file and followed
by closing the file. The file-manager maintains data structures that indicate client id, file
id, access mode and level of access for files that are open (The level of access is the level
of the kernel's invocation which may be different from the level of the client's original
request.). The file-manager acknowledges successful and unsuccessful completions of all

2A client with write access excludes all other writers.

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 179

invocations. As explained earlier, ,hese may or may not reach the clients who originated
the invocation.

Before delving into details of file-manager operations, it may be appropriate to get an
appreciation for the kinds of security issues that arise in the file-manager: The following
discussion will serve as an illustration:

Example 1: Suppose client A is writing to file X at level a.

All invocations to the file-manager are at least at the level of the object. It is all
right for users at levels that dominate a to know that the file is being written into. Since
there can be no invocations below a no special security considerations are in play.

It would be a disservice to clients at higher level if they are not allowed to access
objects when lower level clients are accessing the same.

Example 2: Suppose client A is reading file B at level b.

Writes cannot be allowed when another client (whose level dominates the new re-
quest) is reading the file. This is not for security reasons, but because the information
being read will be constantly changing and would be an unacceptable hindrance to ap-
plication programs and human users. In addition, the file being read may not be in a
consistent state, since the writer may not have completed the update. But, the client
cannot be told that the file is being read by a higher level client because this would be
an overt channel.

The sections that follow try to outline the rules for each of the file-manager operations
and outline the rationale for the way special situations are handled.

It may also be appropriate to note the following restrictions:

e All communications with the ODB are through the Message Switch as opposed to
direct interactions with the COS.

* It is assumed that files are single level and not replicated.

e The discretionary access rights are fixed.

* There is one channel per client per object per level.

4.1.3.2 Operations

4.1.3.2.1 Openfile Rules governing openfile operations:

" Client A's invocation at security level a can open a file B to read if and only if a
dominates security level of file B.

" Client A's invocation at security level a can open a file B to write if and only if
security level of file B equals a.

180 CHAPTER 4. FORMAL METHODS

The request to open translates into a ReadSDBEntry invocation on the kernel. Once
the level of the object is determined, the invocation is checked against the above rules.
If there are no violations, the invocation succeeds and an acknowledgement is sent at
the level of his invocation.

Success of the invocation means different things for -ead and write access mode
requests. For read requests, the first step is creating a ghost file at the level of the
invocation. The ghost file would be a copy of the file that the client intended to access.
Relevant data structures would be updated to map the client's read request onto this
ghost file. For write requests, no ghost files need be created. In both cases data structures
are updated to reflect the client's access to the object.

Any error message would depend on the nature of the infringement. The case of
interest is:

e access mode is write and level of object does not equal the level of request.

Reply is the error message 'No permission'. Since the level of the request equals
the level of the object there is no violation of security to acknowledge that denial
was due to lack of permission.

4.1.3.2.1.1 Special Case - File already open File B is the object being ac-
cessed. The security level of file B is b. C is a client accessing file B at level c. (There
may be other clients accessing file B). The current request is from Client A at level a.

* Current client already has access to file at a different level

client C = client A but c A a

Since there is more than one channel per client per object, the request is handled
as a fresh request.

* Client (with no previous access) issues open to read request

client A : client C

Since read requests are handled by creating ghost copies of the file, read requests
would always succeed, regardless of whether the file is being accessed by another
client in the read or write mode.

* Client (with no previous access) issues open to write request

1. Request to open a file that is being accessed at least by one other client in the
write/readwrite mode.

There is no breach of security to inform the client that the file is in use.

2. Request to open a file that is only being accessed by other clients in the read
mode.

Since all the read requests were handled by creating ghost files the true object
is free to be written into. Therefore, the request would succeed.

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 181

4.1.3.2.2 Readfile Rule governing readfile requests:

o Client A, at security level a, can read file B if and only if there is an entry in the
file-manager's tables to indicate that A has B open at level a to read or readwrite.

An error message is issued to clients attempting to violate the above rule.

4.1.3.2.3 Writefile Rule governing writefile requests:

o Client A, at security level a, can write to file B if and only if there exists an entry
in the file-manager's tables to indicate that A has B open at level a to write or
readwrite.

An error message is issued to clients attempting to violate the above rule.

4.1.3.2.4 Createfile Rule governing createfile operations:

o A client at security level z can create files at security level y if and only if y
dominates z.

An error message is issued to clients attempting to violate the above rule.

The client cannot choose the UID for the file being created. The file-manager relays
the UID created by the kernel to the client.

4.1.3.2.5 Deletefile Rule governing deletefile requests:

* A client of security level x can delete files at security level y if and only if y
dominates x.

An error message is issued to clients attempting to violate the above rule.

4.1.3.2.5.1 Special Cases: File in use Client A issues a request at level a to
delete file B, whose level is b. File B is being accessed by client C at level c.

Even though delete-ups are allowed by setting the "up" bit, the invocation reaching
the file-manager would be at least at the level of the object. (see section 4.1.2.4 for
details of "up" operations). Therefore, level b = level a.

If C is reading the file, then the actual reads are occurring on a ghost file. Therefore,
deleting the actual object will not affect the read operation in progress.

If C were writing to the file, then the file would be deleted. There is no point in
allowing continuation of the write operation because client A has demonstrated intent
to delete the file.

182 CHAPTER 4. FORMAL METHODS

4.1.3.2.6 Closefile Rule governing closefile requests:

* Client A's invocation at security level a can close file B if and only if an entry
exists in the file-manager's tables to indicate that A has B open at level a.

An error message is sent to clients attempting to violate the above rule.

4.1.3.2.6.1 Special Cases

• File being closed is a ghost.

This is the scenario when client closes a Ele that was open to read. The ghost file
is deleted.

4.1.4 The Catalog Manager

The purpose of the catalog manager is to provide an abstract space of symbolic names
for objects. The catalog manager functions by translating from an object's symbolic
name to its UD. The association of a symbolic name with the LID to which it can be
translated will be called an alias.

The internal name for each SDOS object, the name by which it is known to the
kernel, is its UID. The UID is chosen by the kernel as an almost arbitrary string of bits,
and therefore tends to be hard for users to remember. Users of the system will usually
prefer to choose and to work with alphanumeric names: symbolic names tend to be more
memorable than UIDs. The catalog manager provides the connection between these sets
of names. The system-wide collection of aliases which relate symbolic names to UIDs is
called the catalog.

For example, it may be desirable to let the symbolic name "bar" stand for the UID
U1. The catalog manager will allow this alias "bar : Ul" to be stored in the catalog and
recalled.

The catalog is divided into a hierarchically-organized set of sub-catalogs called di-
rectories, which may be thought of as containers for aliases. These directories are the

objects managed by the catalog manager: all invocations handled by the catalog man-
ager are invocations on directories to create, destroy, lookup, or manipulate aliases. A
symbolic name is translated by finding the directory in which it is stored, and returning
the UID to which it is aliased. A complete symbolic name will comprise a list of iden-
tifiers, called the directory path or simply path. Each proper initial subsequence of the
path is itself a symbolic name for a directory. By taking successively longer initial sub-
sequences, the path gives the proper sequence in which directories should be searched,
starting at the root directory, in order to find the directory containing the UID to which
the symbolic name is aliased.

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 183

For example, let the symbolic name "/usr/foo/bar" be a directory path, where slashes
separate the identifiers in the path. To successfully translate this symbolic name to a
UID, the catalog manager must first search the root directory for the identifier "usr".
"Usr" should translate to the UID of another directory, which is searched for the identifier
"foo". "Foo", in turn is translated to the UID of a third directory, which will yield an
alias, such as "bar : Ul". U1 is then the translation of "/usr/foo/bar".

A UID may have more than one symbolic name as an alias. In other words, different
directory paths may translate to the same UID.

The SDOS catalog manager has some similarities to its Cronus namesake. In ad-
dition to providing aliasing and lookup capabilities, it optimizes the lookup process by
replicating some of the directories (and therefore aliases in those directories) at more
than one SDOS host which is running the catalog manager. The SDOS catalog manager
differs from the Cronus catalog manager in that a replicated directory need not have
replicas at every host. In particular, a host will not contain a directory replica whose
level is not in the level set of that host. The directory hierarchy forms a tree. As a prac-
tical matter, nodes of that tree which are closer to the root will be used more frequently
in lookups and therefore are more likely to be replicated, but the catalog manager does
not enforce any rules concerning which nodes must be replicated.

Also unlike the Cronus catalog manager, the SDOS catalog manager will not com-
municate directly with the underlying COS. Therefore, it must send messages through
the kernel message switch in order to use stable storage provided by the COS. The
directories will reside on stable storage, and operations invoked on the directories will
generally result in requests made by the catalog manager to the ODB.

The catalog manager we have defined is an MLS entity. In other words, it will receive
and securely reply to requests for catalog operations at more than one security level. The
SDOS security policy therefore requires that the catalog manager prevent information
about higher-level requests from affecting its behaviour at lower levels. It is possible
to implement SDOS without an MLS catalog manager: copies of a single-level catalog
manager would then be created interactively for each request or for each level of request.
Although this scheme would work, the catalog manager services are used so commonly
that the resulting system would pay a high price in efficiency.

Under the current design, the catalog manager is also able to deal concurrently with
simultaneous invocations from different clients. This fact both decreases and increases
the complexity of the manager's algorithm. While waiting for the kernel's response to
an ODB request, for example, it is not necessary for the catalog manager to buffer new
invocations which arrive. On the other hand, since an invocation on a directory will
usually require intermediate steps which are secondary invocations on the ODB, the
manager must store the intermediate states of processing for each such invocation.

Two problems must be overcome in implementing replicated directories. First, repli-
cas of a directory must appear on different hosts under the same UID. A replication
operation, ReplicateODB, is assumed to be provided by the kernel. This operation

184 CHAPTER 4. FORMAL METHODS

allows an object on one host to be duplicated on another, with the duplicate object re-
taining the same UID. This is a secure operation if carried out at the level of the object
being duplicated.

Second, replicas of a directory must be kept consistent. This the responsibility of
the collection of catalog managers rather than of the kernel. The catalog manager must
record, for each directbry D, whether that directory is replicated, and if it is, the name
of the host on which the 'primary' replica resides. The catalog manager on this 'primary'
host will be responsible for broadcasting and serializing updates to D. This method of
concurrency control was. chosen purely for simplicity. It has the obvious drawback that
updates to D will be denied if the primary host fails.

4.1.4.1 Operations

The abstract operations defined and implemented by the catalog manager are as follows:

4.1.4.1.1 lookup This operation will attempt to return the UID of an object given
a symbolic name for that object. Every lookup is an invocation on a given UID, which is
the directory which serves as a starting point for the lookup search. The symbolic name
is then a directory path relative to the starting UID. Since the catalog is hierarchically
structured, any such relative lookup could also have been expressed as an absolute path
starting at the root directory. Symbolic names which are expressed relative to a UID
other than the root serve as a shorthand, to reduce the number of directories which must
be visited during the lookup.

For example, let the UID of the root directory be U1, and let the UID associated
with symbolic name "/usr/foo/bar" be U2, where the identifiers in the directory path
are separated by slashes. Then an object, "file", in directory U2 can be translated either
by a lookup invoked on U2 with parameter "file", or by a lookup invoked on U1 with
absolute pathname "/usr/foo/bar/file".

Upon receiving the lookup invocation, the catalog manager attempts to read the
ODB entry for the starting directory. If that attempt fails, the lookup fails and an error
is returned to the client. If that attempt succeeds, the starting directory is searched
for the first identifier of the relative path. If the directory holds no such identifier, the
lookup fails. Otherwise, suppose that the UID to which the identifier is aliased in this
directory is U. If the identifier is the final identifier in the symbolic name, then the
lookup is complete and the UID U is returned to the client as the translation of the
symbolic name relative to the starting directory. If not, the catalog manager attempts
to continue translating the path. Continuing the translation is equivalent to a lookup
invocation on UID U with a relative pathname which is the original pathname with the
first identifier removed.

Rather than explicitly make this secondary invocation, however, the catalog manager
tries to optimize the search by immediately reading object U from the local ODB. We

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 185

suppose that a child directory can often be found on the same host as its parent, and
therefore this ODB request will often succeed. If it does not succeed, the catalog manager
will explicitly make the invocation on object U, permitting the local message switch to
locate a host on which U resides.

Lookup operations on behalf of several clients can be interleaved by storing a list
of concurrently progressing operations. This list must record, for each operation, the
depth to which the relative directory path has been translated.

A lookup may fail for security reasons at any stage of translation of the path. All
ReadODB requests are sent to the kernel at the level of the original client's invocation.
If a directory in the pathname cannot be read at this level, the ReadODB request will
fail, and the lookup will be aborted. The client will be told of the abortion at the same
level as the original invocation.

There is, in general, no restriction on the level of any directory. The level of a
directory represents an upper limit on the sensitivity of the aliases it contains. These
aliases may be either names and UIDs of objects or of subdirectories. There is no
necessary relation between the level of one directory and level of its parent directory
which contains its alias. Consider the example shown in Figure 4.1.

The ovals in the figure represent directories, and the symbols outside each are their
UID and security level. Inside each oval is a list of aliases. The root directory, U0 ,
is public. Typically, directory structure will involve monotonically increasing security
levels as the directory tree is descended. An example is the left half of the tree. The
symbolic name "/usr/vinter/filel" can be translated, starting at the root, to UID U9 by
a client invoking a lookup at CONFIDENTIAL, since every directory in the path can be
read at CONFIDENTIAL. The right half of the tree shows a less common situation. The
symbolic name "/usr/weber/filel" cannot be translated by a CONFIDENTIAL lookup
starting at the root, since directory U2 cannot be read at this level. (The names of
mailbox directories are SECRET in this case). However, the symbolic name "filel" can
be translated if the lookup is started at directory U5 , resulting in UID U7 being returned.

The situation in which the level of a child directory does not dominate the level of
its parent causes two problems. First, the catalog manager described in this section
cannot create such a child directory in a single operation, but must require the client to
act at two separate levels (as described under the CreateDirectory operation in section
4.1.4.1.4). Second, for the child directory to be useful at its own level, users must be
provided with its UID directly. This is possible if it was a user at the directory's level
who created it, or if it is initial environment information at login. For example, the UID
may be a user's home directory.

4.1.4.1.2 CreateAlias A directory UID, an object UID, and a symbolic identifier
(with no directory path structure) are given as arguments to a CreateAlias invocation
at level 1. The catalog manager attempts to add the new alias consisting of the identifier
and the object UID to the directory. During the CreateAlias invocation, the catalog

186 CHAPTER 4. FORMAL METHODS

Uo (Public)

usr: U,
mail: U2

U1 (Public) U2 (SECRET)

vixiter: U3 weber: Us
02: U4 SDQS: U6

U3

(COCNFIDENTIAL) U4 (SECRET) Us (Public) U6 (SECRET)

filel: U9 ... fie:U
Cfile2: U7

Figure 4.1: A sample directory structure

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 187

manager will invoke ReadODB and WriteODB on the host. The CreateAlias invocation
will therefore fail if level I does not equal the level of the directory. It will also fail if the
symbolic identifier already exists in the directory.

The invocation of Create.Aias on directory D by a client is routed by the message
switch to any host on which D resides. This host must be able to start an instance of the
catalog manager, M 1, whose level set includes the level of D. Manager M1 determines
whether D is replicated by querying the SDB. If it is not, then the CreateAlias operation
can be carried out purely locally.

On the other hand, if D is replicated, then manager M1 determines the location of
the primary copy of D. From a list of other catalog managers which M1 maintains, M,
determines that M 2 is the instance of the catalog manager on that host. Assume that
M 1 $ M 2. M, sends (not an invoke, but direct IPC) a copy of the CreateAlias request
to M2 . M 2 holds the request until all previously arriving updates to D have completed.
It then broadcasts a copy of the request to all catalog managers. Each catalog manager,
upon receiving such a request, attempts the CreateAlias operation at level I on its
local copy of D. Assuming that the kernel has successfully maintained consistent SDB
information for D, and that the catalog manager has maintained consistency among
the replicas of D, every instance of CreateAlias will have the same effect on each local
replica. When M 2 receives replies from each catalog manager, it replies to M 1 . M, then
replies to its client.

If M 1 = M 2 , the communication between M1 and M 2 described is not necessary.

All messages sent during the above process occur at level 1.

4.1.4.1.3 RemoveAlias A directory UID and a symbolic identifier are given as ar-
guments to a RemoveAlias invocation at level 1. The catalog manager attempts to remove
the alias for that identifier from the directory. During the RemoveAlias invocation, the
catalog manager will invoke ReadODB and WriteODB on the host. The invocation will
Lherefore fail i" level I does nut equal the level of the directory. It will also fail if the
symbolic identifier does not exist in the directory. If the directory is replicated, the
concurrency control mechanism for updating it is as described for CreateAlias.

4.1.4.1.4 CreateDirectory A directory UID d, a level x, and a symbolic identi-
fier (with no directory path structure) are given as arguments to a CreateDirectory
invocation at level I. In order that this invocation succeed, the catalog manager must
successfully interact with the local ODB three times:

1. The catalog manager invokes ReadODB on directory d to read its aliases.

2. The catalog manager invokes CreateODB to create a new object (of type 'direc-
tory') at level z; if successful, a new UID u is returned by the ODB.

188 CHAPTER 4. FORMAL METHODS

3. The catalog manager invokes WriteODB on directory d to add the new alias con-
sisting of the symbolic identifier and new UID u to directory d.

The CreateDirectory invocation succeeds if and only if every invocation on the ODB
succeeds. The invocation will therefore fail if level I does not equal the level of d, if I is
not dominated by z, or if the identifier already exists in d.

Note that the CreateDirectory operation cannot be used in a single invocation to
create a directory whose symbolic name is kept in a higher-level directory. With the
catalog manager operations as described, this is only possible in two steps: a CreateDi-
rectory invocation at one level, and a CreateAlias invocation at a higher level, using the
newly-created directory's UID as a parameter.

If directory d is replicated, the concurrency control for updating it is as described
for CreateAlias.

4.1.4.1.5 RemoveDirectory A directory UID d and a symbolic identifier are given
as arguments to a RemoveDirectory invocation at level 1. In order that this invocation
succeed, the catalog manager must successfully interact with the local ODB three times:

1. The catalog manager invokes ReadODB on directory d to read its aliases.

2. The catalog manager invokes RemoveODB to delete the directory whose UID is
the translation of the symbolic identifier.

3. The catalog manager invokes WriteODB on directory d to delete the alias contain-
ing the symbolic identifier.

The RemoveDirectory invocation succeeds if and only if every invocation on the ODB
succeeds. The invocation will therefore fail if level I does not equal the level of d, or if
the symbolic identifier does not exist in d.

If directory d is replicated, the concurrency control for updating it is as described
for CreateAlias.

4.1.4.1.6 ReplicateDirectory The invocation to replicate a directory has as its
object the generic directory object on a particular host, H. It has as its parameter the
UID of the directory to be replicated, and it occurs at some level I. In response, the
catalog manager on H invokes ReplicateODB on the local kernel at the same level I.
The ReplicateDirectory invocation succeeds if and only if the ReplicateODB invocation
does.

4.1.4.1.7 DereplicateDirectory The Dereplicate Directory operation is identical
to ReplicateDirectory, except that DereplicateODB is invoked on the kernel.

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 189

4.1.4.2 Other Remarks

The multi-level security of the catalog manager is straightforward. Each message re-
ceived by Lhe manager results in zero or more messages sent, all at the same level. Each
message sent is purely a function of those previous messages involved in the current
invocation. Each decision whether a particular directory is visible to clients at a given
level is made within the ODB and returned to the catalog manager at the level of the
current invocation. Therefore, processing at different levels will never interact. See
section 4.3.3.

Several simplifications have been made in this catalog manager design.

" There are no discretionary access controls defined or implemented by the catalog
manager as written. These could be added.

" The operations of Create- and Remove- Directory and Aliases are defined for a
particular directory, expressed as a UID. These operations could have been made
more general by defining them for arbitrary symbolic directory paths. However,
the same general effect can be achieved were the client first to use the lookup
operation to translate the path to the UID of a directory, and then to invoke
Create or Remove on that UID.

" The set of catalog managers is assumed to be static, rather than dynamically
changing as hosts are started or halted. In either situation, what is important is
that each catalog manager keep a list of the UIDs of all other catalog managers.
In the dynamic case, this list must be updated. These updates, and the means for
initializing the list, are not reflected in this specification.

4.1.5 Authentication

4.1.5.1 The TIP and Authentication Manager

There are two processes important to proper authentication. They are the TIP (terminal
interface process) and the Authentication Manager. The TIP transmits requests between
the user and the system and the Authentication Manager resets the SDB and CI entries
of the TIP for each new user.

The Authentication Manager supports at least the following operations: Authenti-
cateAs (sometimes referred to as Login) and Logout.

For the AuthenticateAs operation, the Authentication Manager receives a login re-
quest from the user which contains the principal, the password and the desired security
level. (A user with multiple accounts may have different passwords for different security
levels.) This request is checked to see if it is allowed and the the message label is checked
to see if the request came from a terminal ready to login. If the request is not permitted
the TIP is informed that the request failed. If it is permitted, first the SDB entry is

190 CHAPTER 4. FORMAL METHODS

updated and then the CI fields are updated (by requests to the kernel). If this succeeds
the TIP is informed the request succeeded; otherwise it reports failure.

A Logout request will first set the CI to minimal rights and then set the SDB back
to 'terminal ready to login' authority. The TIP is informed when the operation is
completed.

Local password data is initialized at the time the Authentication Manager is started.
It is anticipated that a change password operation will be implemented.

The TIP serves two roles. It must handle login and logout requests as well as normal
transactions between a validated user and the system. This exchange of information
involves converting the messages from a form the user recognizes to one which the system
recognizes (and conversely from the system to the user). In particular, when converting
a message from the user to the system, the correct security level is set. However, there is
no explicit specification to ensure that a user request gets converted to a system request
with the same semantic content.

T',e TIP also plays a role in authentication. The TIP may reside in one of the
following states:

READY: waiting for a login request to send from the user to the system

LOGINGIN: waiting for acknowledgement of login from the authentication manager

ACTIVE: messages are passed between the user and the system

LOGINGOUT: waiting for acknowledgement of logout from the authentication
manager

Initially the TIP is in the ready state. A request coming in from the user to login
will cause the request to be forwarded to the authentication manager and the TIP to
enter the logingin state. If the reply comes back indicating a success, then the TIP
is put into the active state; otherwise it returns to the ready state. When the TIP
is active it will send and receive messages at the requested login level. If one of the
requests is a logout, then the TIP will enter logingout sta.e and wait for the reply of the
authentication manager. When successful, the TIP returns to the ready state. Note:
The TIP is specified so that it will reject a login request accidentally routed to it. But
encryption of logins may be added if extra robustness is desired.

Part of the functioning of the TIP is provided by a screening mechanism which we
will call the Filter. The purpose of the Filter is to ensure that the identity of a user
does not change in the middle of a terminal session. This process may be partially
implemented by hardware or people. Because there is such a wide number of possible
designs, we will mostly concern ourselves with enumerating what conditions it must
satisfy. A user may request access to a terminal, and then the reply will be permission
granted, or permission denied (depending on whether the terminal is active). We will
call such a message a 'line request' or a 'terminal request'. A user must explicitly release
the terminal so that the next person can use it. Such a message will be called a 'line

4.1. THE FORMAL TOP-LEVEL SPECIFICATION 191

release request' or 'terminal release request'. The release request will cause a logout,
and put the terminal back in the ready state.

4.1.5.2 Achieving Security

We would like the authentication process to be totally secure. Unfortunately, this is not
possible. The source of the problem is that an unauthorized user is permitted to make
a login request. Even a negative reply may yield a small bit of sensitive information.
(Namely, that a certain password for a given user does not work at that security level.)
If this could be repeated enough times then an unauthorized user could learn enough to
identify himself as someone else. Thus, the methodology used to prove that the system
is essentially secure must take this into account.

There is also another complication. We would like to show 'true restrictiveness'.
That is, we want to show restrictiveness based on the true level of messages rather than
the level indicated in the label field. Now, a login request may or may not contain
information about a real password, user, and security level. If a combination of these
is valid then knowing this information could in turn give you real information at that
level. Hence the true level of a legal login request will be considered to be the level
of the security requested. But suppose the request is not legal. If the information is
random then it may tell you nothing. But if it comes from a valid user who misspelled
a password, then perhaps it is at the level of the request. But more troubling, a top
secret user might try to login at unclassified, but accidently use the top secret password.
Rather than trying to identify the level of this message we will simply give it a level
independent of any other user data. We will call the level of an illegal login request
to be level X, or the ready-state level. Note that legal logins will also be sent with
their actual label set to X. Hence, demonstrating 'true' restrictiveness will be a bit
complicated. Fortunately we can restrict the authority to receive label X messages to
only the TIP, the Authentication Manager, the message switch, part of the kernel, and
System Managers.

A related problem occurs with logout acknowledgement. If it is a line release ac-
knowledgement then its level is the lowest one available to users (since the line release
is this low level and this acknowledgement is a consequence of it). If it is just a simple
logout acknowledgement, then it is at the level of the user who issued the logout. How-
ever, in both cases the kernel will send the message with the actual label set to X. As
above, this complication is sufficiently contained, so as to not pose too great a problem.

Users will be trusted not to pass information to lower security levels. This could
potentially happen in two ways. First they may login with a low level account and write
high information into it. Secondly they may may acquire and release the terminal based
on secret information. The first problem should be obvious to the user and so should
be avoidable. The second one is somewhat more delicate. Namely, the fact that some
secret request took a long time, may influence the user to release the terminal later.
Hence a trojan horse process might be able to manipulate the user response to release

192 CHAPTER 4. FORMAL METHODS

a line. Indeed it may be able to do this as a storage channel rather than as a timing
channel (for instance by using an unclassified process as a pseudo-clock). However, even
if the user unintentionally violates this principle, it is unlikely that the size or quality
of the information will be significant. In the proofs which follow we will assume that a
user does not do any write down. The potential pitfall will be included in the summary.

In practice, it may be possible to avoid implementing any filter, and we will discuss
the possibilities.

4.1.5.3 Authentication and System Security

The authentication manager will correctly identify valid logins and will thus be able to
attach correct security labels to messages. The authentication manager will be restric-
tive.

The TIP's outputs are solely a function of its state and the input (it is a finite
automata). A correct login will setup the TIP to "stamp" labels on future messages
going out and screen out messages coming in from the system. Because the user is
trusted, all messages to the system will be labeled correctly. (The Filter will only allow
one user at a time to use the terminal.) When the user does a logout or terminates a
session, the TIP will await confirmation from the system and then return to a ready
state. The TIP will also be restrictive.

Hooking the TIP and authentication manager to the rest of the system, and by
applying the hook-up theorem, the entire system will be restrictive.

A user trying to login with an incorrect login will get no reply or a reply saying error.
By the external axioms, the response rate will be sufficiently slow and the passwords will
be of such complexity that the probability of an accidental login will be approximately
zero.

Hence the system will be essentially secure.

4.2 Verifying MLS Properties

One of the goals of this project has been to formally verify that the SDOS design meets
the requirements of the SDOS security policy. This would give high assurance that the
design is "secure". Much of our work toward this goal has focussed on verifying the
part of the mandatory policy requiring constraints on information flow. This part of the
policy is stated in section 2.1.2.3.

We have formalized the design of SDOS as a Gypsy program. (See section 4.1

and Appendix A.) To prove, using the Gypsy methodology, that a program meets
it requirements, one must express those requirements as assertions that are true at
particular times during the execution of the program. We found, however, that the

4.2. VERIFYING MLS PROPERTIES 193

information flow constraints of the SDOS policy cannot be directly expressed in this
way. Other approaches needed to be found. This section presents the approach we took
and the theory that supports it.

4.2.1 A New Security Methodology

Our emphasis on mandatory information flow security is a result of the emergence of
a new methodology for security verification. The aim of this methodology is security
verification through analysis. In other words, large designs can be decomposed into
smaller ones, and the security of the larger can be inferred once the properties of the
smaller are known. This approach has obvious merits, but it is only recently that it has
been applied to formal specifications for information flow security.

The work of McCullough [McCullough 87] is a particular case of this new methodol-
ogy. In his work, system components are defined in terms of their possible behaviours, in
a way that simplifies and slightly modifies the approach of CSP [Brookes et al. 841. The
hook-up, or composition, of two components is defined as in CSP. McCullough searched
for, and found, a property that captures many desirable features of information flow
security and is also a composable property: the hook-up of two components with the
property is a new component with the property. We have called his security property
restrictiveness, or restriction.

The verification work presented in this report ties into the new methodology. The
SDOS security policy requires that the entire assured MLS part of the system be restric-
tive. We have endeavored to show that the multi-level secure processes that comprise
SDOS are each restrictive, so that the restrictiveness of the entire system could be in-
ferred from composability. However, the problem of demonstrating the restrictiveness of
each MLS process remains. One way in which we have handled this problem is to find
other, simpler, properties, which when taken together, imply the restrictiveness prop-
erty. These simpler properties are then proved, using Gypsy, for each component. We
needed to develop special techniques for proving some of the simpler properties using
Gypsy. This section discusses these techniques and others.

In section 4.2.2 we present a CSP-like framework for discussing processes. We will
later make an informal connection between these processes and designs that can be
expressed in Gypsy. Within the framework, we formally define the restrictiveness se-
curity property. Several other properties are introduced that are "security-like", in the
sense that they also limit deducibility, and hence, information flow. Of primary impor-
tance is the property called weak non-interference (WNI). The limits on deducibility
made by this property are similar to those intended in the Goguen-Meseguer model
[Goguen and Meseguer 82]. However, WNI is both weaker than restriction, and not
composable. By conjuncting several other simple properties with WNI, we can infer
restriction. A proof of this claim is given.

Another "security-like" property, strong non-interference (SNI), is introduced. This
property is neither weaker nor stronger than restriction, but it is composable. Since it is

194 CHAPTER 4. FORMAL METHODS

composable, if it were used as the high-level security requirement for a system, it could
also be used as the security requirement for individual components as well. However,
it is too strong to be generally useful, since it does not allow components that upgrade
information from one security level to a higher one.

We found that Gypsy is ill-suited to direct verification of properties such as restric-
tion. The reason for this is discussed more fully in section 4.2.3. However, simply
changing the specification language was unlikely to solve the problem: other popu-
lar specification methodologies used for proving invariant properties of state machines
would fare no better. Section 4.2.3 is devoted to showing a way to apply the theory of
section 4.2.2 within Gypsy. The restrictiveness of a component is to be inferred from the
fact that it satisfies WNI, plus other simpler properties. Decomposing restrictiveness
into simpler properties can now be seen as an advantage, since these simpler properties
are easier to handle in Gypsy. The hardest is WNI, and we present an algorithm for
verifying WNI in Gypsy.

In verifying the information flow security of various SDOS components, we found
that the definition of security as restrictiveness was not always appropriate. We needed
generalizations of the property to permit the following:

" limited downgrading of information via covert channels;

" special protocols used in communication between components;

* assumptions about the boundary between the assured system components and
process and users with limited or no assurance.

Section 4.2.4 contains some successes in this direction. However, the subject is far from
closed.

4.2.2 Basic Theory

4.2.2.1 Notation

An event is an action performed by a system. Each event will represent a synchronized
message-passing communication between systems, or a communication between sub-
systems from which a single system is composed. Possible behaviours of each system
will be represented by sequences of events.

We will need a few notations concerning sequences. E and F will stand for arbitrary
sets of events, e a particular event, a and 0 sequences of events, and f : E -+ F a
mapping from E into F. Let I be an arbitrary security level, and suppose that each
event is associated with some security level. We define:

* E is the set of events not in E;

4.2. VERIFYING MLS PROPERTIES 195

" E- is the set of all possible sequences formed from the events in E;

* a^/3 is the concatenation a followed by fl;

* a Q 0 iff 8 is an initial subsequence of a, while a : 3 iff 8 is a proper initial
subsequence;

" last(a) is the last event in a (undefined if a is empty), while nonlast(a) is the
sequence with the last event removed; first(a) is the first event in a (undefined if
a is empty), while non! irst(a) is the sequence with the first event removed;

* a T E, the projection of a with respect to set E, is the sequence obtained from a
by deleting all events not in E and preserving the order of the events that are left;

* a T 1 is the projection of a with respect to the set of events associated with security
levels less than or equal to level 1;

* (e) is the sequence with the single event e, and () is the empty sequence;

" f is the mapping from E' into F* of application of f componentwise.

4.2.2.2 Processes

A trace is a sequence of events which is a possible behaviour of some system.

An event system is a structure of four sets, (E, 1,0, T), where E is a set of events,
I C E a set of input events, 0 C E a set of output events, and T _ E' a set of traces.
Elements of I are events which are offered as a choice to be made by the environment
of the event system. Elements of 0 are events which may simultaneously be inputs to
other event systems. We will generally require that the sets I and 0 be disjoint, i.e.,
I n 0 = {}. There may also be events in E which are neither inputs nor outputs; these
events are internal to the event system, and can be thought of as communication events
between constituent event systems. The set T includes exactly those sequences which
are traces, i.e., possible behaviours of the event system.

A view is an arbitrary set of events. For any event e E v, we say that e is visible in
the view v. Each view separates the universe of events into a set of events visible to some
viewer, and a set which is invisible or hidden. A particular view which is important for

multi-level security is the set of all events associated with security levels less than or
equal to level I.

Definition 1 An event system (E, I,O,T) is a process iff the empty sequence is a
trace, and for any possible trace of the event system, all initial subsequences are also
traces. So,

() E T and
Va,-yE E, a - ET -- aET.

196 CHAPTER 4. FORMAL METHODS

Definition 2 A process (E, I,O,T) is input-total, or simply total, iff any trace may
always be extended with any input. That is,

VaET, VeEI, a ^ (e) T.

Two processes, viewed as executing in parallel, ma, .. -- me cases be hooked together
to form another process. If an input event of one process is aso an output event of the
other, then this mutual event is neither an input nor an output of the hooked-up process
but is an internal communication event. We must rule out the possibility that events
shared by two processes are not communication events of this form.

Definition 3 Processes P = (E 1, I,O ,Ti) and P2 = (E 2 ,1 2 ,0 2 , T2) are coherent if

El n E2 = (I1 n 02) u (12 n 0i).

Definition 4 The hook-up of processes P = (El,I1 ,O 1 ,TI) and P2 = (E 2 ,1 2 ,0 2 , T2)
is defined if P and P2 are coherent, and yields a new process PllP2 = (E,1,O,T) with

E= E 1 uE 2

1 Ii U 12 - El n E2

0=01U0 2 -ElnE
VtEE*,tET 4-p (tTEi)ETiand(tTE2)ET 2 .

A sequence will be a trace of a hook-up process if and only if its projection on the
set of events of each component process is a trace of that component.

The internal communication events of the hook-up, the events that are shared be-
tween the two processes, form a sequence. This sequence is the same for both processes.
Each shared event represents synchronous communication, i.e., the two processes must
simultaneously agree to engage in the event.

4.2.2.3 Security Properties

In this section, several variant definitions of security for processes are given. Compos-
ability is defined, and the composability of each security property is determined. The
set v represents an arbitrary view.

Definition 5 A process (E, I,O,T) satisfies strong non-interference (SNI) with
respect to view v iff for every trace, the visible projection of that trace is also a trace.
That is,

VaET, TvET.

Definition 6 A process (E, 1,0, T) satisfies weak non-interference (WNI) with
respect to view v iff for every trace, there is another trace with the same visible
projection but with no invisible inputs. Formally,

VcE T, 3a' E T, 'T v = aTv and a'T ITV 0.

4.2. VERIFYING MLS PROPERTIES 197

Strong non-interference clearly implies weak non-interference.

Definition 7 A process (E, 1,0, T is restrictive with respect to view v iff it is
input-total and for any sequences a, y E E', and input sequences 3,/3' E 1', if

a AO - E T and
,6 T v = 3't v and

-v t = 0

then there exists a sequence -y' E E* such that
CA ̂ '6A -I' E T and

/' T v = -Y T v and
"y'T ITV= 0.

Each of these definitions limits deducibility. Each holds for an arbitrary trace, which
may be thought of as the actual system history, and asserts that there could also exist a
history with the same visible behaviour, but with possibly different invisible behaviour.
[f the invisible behaviour could be different, then one is prevented from deducing that
the actual invisible behaviour occurred.

The three properties differ in which alternative histories they claim are possible.
SNI constructs an alternate history by removing all invisible events, WNI constructs an
alternate history by removing all invisible inputs, and restriction constructs an alternate
history by arbitrarily changing a block of the most recent invisible inputs. Restriction
implies WNI, since one could remove all the invisible inputs in.a history by starting with
the most recent and working backwards. The converse is not true, and counterexamples
are easily found.

Definition 8 A property of processes is composable (or, is a hookup property) iff,
for any coherent processes P and Q, that property holds for PIIQ whenever it holds for
P and it holds for Q.

Theorem I The'property of SNI with respect to v is composable.

Proof: Let Pi = (El,O11 ,0,T) and P2 = (E,1 2 ,0 2,T 2) be arbitrary coherent
processes satisfying SNI with respect to v, and let t be an arbitrary trace of P' lP 2.
Then t T Ei E T, and t T E2 E T2. Using SNI with respect to v for process P we
have t T El T v E TI, and therefore t T v T El E Ti; similarly for process P2 , we have
tvTE 2 ET 2. Then tTvET. r-

The property of being restrictive with respect to view v is also a hookup property.
This has been proved in [Ulysses 87].

WNI is not a composable property. As a simple counterexample, consider the follow-
ing two non-input-total processes. Process A has input events S and P, but no output
events. It has the trace

(SP)

198 CHAPTER 4. FORMAL METHODS

and every initial subsequence of this. In other words, P can be accepted only after S.
Process B has no inputs, outputs U and P, and traces

(P,U)

In other words, if U is output, P must have been output first. Let v be a view that
includes only the event U. (U may be thought of as an unclassified event, while the other
two events are secret.) Both processes are WNI. For the first process, no event is ever
visible, so even if se*cret inputs happened, this fact cannot be deduced. Therefore A is
WNI. For the second, no secret input is ever possible anyway, so B is also WNI. But their
hook-up is not WNI, since the history (S, P, U) that produces the visible unclassified
sequence (U) must have started with secret inputs.

4.2.2.4 Buffers

A buffer is a process which inputs messages, and may later output those same message
in the same order. The events of inputting a message and outputting the same message
are not the same, but there must a mapping which relates one to the other. A simple
specification for a buffer requires that the history of outputs is an initial subsequence of
the history of inputs, appropriately mapped.

Definition 9 The process (E, 1,0, T) is an infinite buffer iff I n 0= } and there is
a one-to-one and onto mapping map : I -4 0, with

Va E E', a E T -+ Va' C a, a' T 0 E map"(a'T I).

In addition, the buffer preserves view v iff

Vx E 1, x E v +-+ map(x) E V.

The idea behind preserving a view is that if any given message is either visible or
invisible, then it is natural that the events of inputting and outputting a given message
either both be visible or both be invisible. This requirement may also be stated: for any
trace a, map'(a) T v = map* (a T v).

Note that there may be internal events of the buffer, but since the definition involves
only projections on I and 0, internal events may be arbitrarily added to or removed
from any trace.

Lemma I Every infinite buffer is input-total.

Proof: Let B = (E, 1,0, T) be an infinite buffer with mapping map, t E T a buffer
trace, e E I an input, and a' an initial subsequence of a ^ (e). If ct' C: a, then we
already know that a' T 0 E map(a T 1). On the other hand, if cf' = a^(e), then
k' T 0 = a T 0 _ map* (a T I) ̂ map(e) = map* (a' TI). So B is input-total. 0

4.2. VERIFYING MLS PROPERTIES 199

The previous lemma showed that a buffer trace may always be extended by any
input. The following lemma gives sufficient conditions for extending a buffer trace by
an output.

Lernxna 2 If process B = (E, 1, 0, T) is an infinite buffer preserving v, then for any
visible output event e E 0 n v, sequences /, v E E*, if

A^ (e) E T and
v E T and

,jTv= vTv

then there ezists an output sequence A E 0* for which

VAA (e) C T and

ATv= 0.

Proof: Because p A (e) E T is a buffer trace, we have that map'(p T 1) = map" ((A e)) T
I) _ (p^(e)) T 0 = P T OA(e). Because v E T is a buffer trace, we have that
map- (v T I) z v T O. Then there is a sequence ic E 0 such that map*(v T I) = V T 0 A n.

Projecting on view v, map'(v T 1) T v = v T 0 t VAPe T v. But by using the facts that B
preserves v and that A T v = v T v, we also have

map*(/ T 1)T v = map'(vT " T v) = map*(I) T v 2- i T T vA (e) = L T O T vA(e).

So first(c T v) = (e) and # = A^ (e)A ' where A,A'E O and AT v = 0.

It now remains to show that V A A A (e) is a buffer trace. Let v be an initial subsequence
of VA A A (e). On the one hand, if v C v, then we already know that map'(V T I) 9 ' T O,
because v is a trace. On the other hand, if L -Li C LAAA(e), then

map-(V' T I) map*(v T I) = map-((VAA(e)) T I) : v ToAAA(e) ;] v'T O.

and the lemma is proved. C.

4.2.2.5 WNI and Determinism

The property WNI is weaker than restrictiveness. For one thing, WNI does not require
input-totalness, whereas restrictiveness does. More importantly, WNI allows one to
produce a new trace from an old one by removing invisible inputs. In comparison,
restrictiveness allows new traces to be produced both by removing and inserting invisible
inputs within a block of inputs. This is an intuitive reason that WNI is less powerful
than restrictiveness. However, if we require that a process satisfy some simple properties
in addition to WNI, we gain the ability to create new traces of that process by inserting
invisible events, including inputs. In particular, we will need to require that a WNI
process also be deterministic, and that it can produce some response to any given input
sequence.

200 CHAPTER 4. FORMAL METHODS

Definition 10 A process (E, 1,0, T) is input-live iff the set I is nonempty and any
trace may be properly extended into another trace ending in an input. That is,

Va E T, 3 a. E T, a. D a and last (a,) E I.

Note that because (E, I,0,T) is a process, input-liveness also implies that there is a
proper extension ending in an input, and which has exactly one additional input.

Definition 11 A process (E, 1, 0, T) is input-universal iff, when it is possible to ac-
cept some input, any input may be accepted. That is,

Vo:ET, Vel,e 2 E I, a ^(el) ET ---+ A(e 2) ET.

The following lemma states that every trace of an input-live and input-universal
system can be extended in response to every non-empty sequence of inputs, and that
the extension can be made to end in an input.

Lemma 3 If process (E,I,0,T) is input-Live and input-universal, then for every trace
a E T, every input sequence 3 E P, and any input e E I, there exists a sequence "Y E E"
such that

a A A (e) E T and

Proof: Use induction on the length of the input sequence 3. Suppose length(3) = 0;
then 03 = (). By input-liveness, there is a sequence a. which is a proper extension
to a, such that aAax E T, and a. T I = last(a.). Let y = nonlast(a,); then

-Y T I = (). By input-universality, aA^IA (e) E T is also a trace. Now suppose the
lemma holds for all input sequences with length < n, and /3 is any input sequence
with length(j3) = n. Then the induction hypothesis, with input sequence nonlast(13)
and input last(/3), shows that there is a sequence A such that aA AA(last(/#)) E T and
A T I = nonlast(3). Again, by input-liveness and -universality, there is a proper exten-
sion a. such that a^AA(last(3))Anonlast(az)A(e) E T is a trace, and a,, T I = Q. Let

= A ^ (last(/3)) A nonlast(a,). Then -y T I = 3. 0

There is more than one useful definition of 'determinism'.

Definition 12 A process (E, I,O,T) is asynchronously deterministic if every non-
input event in a history is uniquely determined by the preceding sequence of events. That
is,

Va E E*, Vel,e2 E 7, a ^(el) E T and a^ (e2) G T - el = e2.

For a process obeying this form of determinism it is possible that a trace can be
extended either by an input or a non-input. This is the natural statement of determinism
for a process which is input-total (or "asynchronous"). A stronger form of determinism,
not applicable to input-total processes, can additionally require that the choice between
accepting an input and performing an output or internal event be made uniquely on the
basis of the preceding history.

4.2. VERIFYING MLS PROPERTIES 201

Definition 13 A process (E, I, O, T) is synchronously deterministic iff

Va E E', Vet,C2 E E, a ^ (eL) E T and a^(e2)ET --

(el: e2 E I) or
(el, e2 E 7 and el = e2).

Lemma 4 If process (E, I,O,T) is synchronously deterministic then

V-,b E T, -y T I = 6 - -T 1 6or6 E 7.

Proof: Let -y = ^ Arl and 6 = 5'^172, where either ill or '12 is 0, or first(1l) #
first(12). In the latter case, first(17) E I and first(12) E I, by the definition of
synchronous determinism. But then 7y1 I = " T IA 1 I T IA1 2 " I = 6TI. This is a
contradiction, and so ;? = () or ?72 = (), as was to be shown. 0

The following corollary is useful for showing that two traces are equal, given that
their inputs are equal.

Corollary 1 If process (E, 1,0, T) is synchronously deterministic then

V-y, 6 E T, -Y T I = 6 T I and last(-y) E I and last(6) E I - -y = 6.

Proof: Suppose 6 -y, then let y = 6A1, where q1 is non-empty. Then -Y T I =

6 T 1^? T I, so 0 = t7 T I. But last(q) = last(I) E I, which is a contradiction. By
interchanging 6 and -, we see that -t [- 6 also leads to a contradiction. Combining with
lemma 4, we have -y = 6. 71

The following lemma shows the invisible behaviour of a deterministic, WNI process
may be altered without changing its ability to accept an input as its next visible event.

Lemma 5 If process (E, I, O,T) is input-live, input-universal, synchronously determin-
istic, and satisfies WNI with respect to v, then for any visible input event e E I n v,
sequences ui, v E E-, and input sequence 03 E I*, if

^ (e) E T and
v E T and
A T v = ' v and

/ T v = 0

then there exists a sequence A E E* such that

I/ ̂ A ^ (e) E T and

A T I = 3 and
A v =

202 CHAPTER 4. FORMAL METHODS

Proof: According to lemma 3, the trace v may be extended in response to input
sequence 3^(e) to produce the trace ,ApA(e) E T, where A T I = 0. Because the
process satisfies WNI, there exists a trace v' E T such that /' T v = L T vAA T vA(e) and
V' T I T V = (). Similarly applying WNI to the trace 1s^ (e), there exists another trace
A' E T such that m' T v = /AT vA(e) and 'TITV= 0. Since A' and Li are traces of a
process, they may be shortened to traces , and vi respectively, each of which ends in
event e. We then have that

jAllil E T
m = Tv ;AT vA (e)
v Tv= T VAA T A (e)

M T Tv = vilTIT = 0.

Calculating,
Vi T I = vi TvT I=
vTvTIAOV^(e) =

AT vT l^<e)

~i TvTI=
jT I.

Then the corollary to lemma 4 shows that AI = Li1.

Equating /i T v with viT v, we find IATvA(e) =vT Av^A T VA(e). Since A T v = vT v,
it follows that A T v = (). Therefore, this A satisfies the required properties. 0

. This next lemma shows that a WNI process satisfying the conditions of the previous

lemma will permit arbitrary invisible changes to a history without changing the next
visible non-input event which is possible.

Lenuna 6 If process (E, I,O,T) is input-live, input.universal, synchronously deter-

m,!.istic, and satisfies WNI with respect to v, then for any visible non-input event

e E (E - I) ' v, and sequences A, v E E", if

A^ (e) E T and

v E T and
?Tv = LT v

then there ezists a sequence A E (E - I)' such that

SA AA(e) E T and

ATv= ().

Proof: Divide the proof into two cases, depending on whether the process has any
visible inputs in which it may engage.

Case I: nv # {}
Let x E I n v be a visible input. Then by lemma 3 with input sequence (x), trace v can
be extended to VAPA(Z) where t I = I . By WNI, there exists a trace v E T such

4.2. VERIFYING MLS PROPERTIES 203

that v' , v = v T vAp vA(x) and v' T IT = () Without loss of generality, we may

choose v' to be the shortest such trace, the one which has no high-level events following
x. So last(L.') = z.

Similarly, trace MA (e) can be extended to pA (e) A^a (x) where a T I = 0. By WNI,
there exists a trace /' E T such that 1' t v = T vA (e)Ao T v^(z) and P' T IT- = 0.
Again, without loss of generality, last(') = z.

Calculating,
' T I = 'T v t I=

vTvTI^*() =

MTvTI^(X) =

1M' T I.

By the corollary to lemma 4, M' = v'. Hence, M T v^(e)^o T v(x) = Li T v^P T vA(z).
Therefore, there exists A E E" such that p 3 AA(e), with At v = 0. Since pE (E - I),
we have A E (E - I)". Since v ApA(x) is a trace, so is its initial subsequence vAAA(e).

Case I: I - v = {}
First we will show that p has no inputs. Suppose otherwise; let its first input be x E V.
Then iA = Al A (x)A 2, where MiT I - 0. Applying WNI to trace lIA(X) AMA2 A(e), there
exists a trace A' E T such that W' T v = T V A A 2 T vA(e) and A' T ITv = ' t I = 0.

Lemma 3 shows that there exists a sequence Iz such that ^Mz (x) E T where IzA,

I = 0. We now have two traces which contain z as their last event and only input; thus
by the corollary to lemma 4, MIiA(z) = M I ^ x). Then Mi T v _1 A' T v. But from the
construction of IA' above, we also know that W T v -1 M T v, which is a contradiction. So
,u contains no inputs.

Similarly, suppose that v contains an input; let its first input be y E V. Then
V = ."1 "(y)AV 2 where v" , I =). Use lemma 3 to extend trace MA(e) to trace
Mt (e) ^AA. (y) - T, where t I = (. We now have two traces which contain y as their
last event and only input; thus by the corollary to lemma 4, V1 A (y) A^ (e) A A (y).
Then vi T v - M * v = v7 v. But from the decomposition of v above, we also know that
V v _V 1 v, which is a contradiction. So v contains no inputs either.

By lemma 3 with input y, extend v to V A VZA(y) E T where v, T I=0. Both this
trace and MA (e) A' ^ (y) E T contain y as their last event and only input; thus by the
corollary to lemma 4, A^(e)A A^(y) = V AL .^(y). Projecting with respect to v and
using the fact that A T v = v T v, we see that vi, t v D (e). So there is a A E (E- I)-

such that v. _ AA (e) and A T v = (). Thus A is the required extension to v. C

4.2.2.6 Strengthening WNI

In this section, we show that if a process satisfying WNI is effectively made input-total
by buffering all its inputs, and if it is also required to be deterministic and to accept
any input sequence, then the hook-up of the WNI process and its associated buffers

204 CHAPTER 4. FORMAL METHODS

is restrictive. Thus we have a means for proving that a process is restrictive, without
resorting directly to the definition of restrictiveness.

In the following theorem, these objects will appear:

* an arbitrary view v;

* a nonempty array of infinite buffers preserving v, B,,..., B,,, with buffer B, =
(Ei, ri, Oi, T),/,i n Oj = () and i * j --- Ei n Ej = {};

" process B = B11IB211 ... !IBn = (EB, 1B, OB,TB), the hookup of all the buffers,
in which

- EB = U(1<,<.) E,;

- IB = U(<i<n) Ii;

- OB = U(1 _<) 0,;

- t E TB iff t t Ei e Ti for 1 < i < n;

" process A = (EA, IA,OA,TA), with IA = OB and EAn EB = IA;

" process W = AlIB = (EW, IW, OW, TW), the hookup of all the processes, where

- EW =EAuEB;

- IW=fB;

- OW =OA;

- tETW iff tTEAETAandtT Ei E T, for 1 < i <n.

Theorem 2 If A is input-live, input-universal, synchronously deterministic, and satis-
fies WNI with respect to v, then W is restrictive with respect to v.

Proof: To show that W is restrictive, we must first show that it is input-total. Let
t E TW be an arbitrary trace, and e any input event for W. We will show that t may
be extended by e. e E IW, and therefore e E Ik for some k, but e is an element of no
other IL, nor is it in EA, since these sets are disjoint from Ik. Since Bk is an input-total
process, (t^(e)) T Ek E T,. But we aiso have (tA e)) T E = t T E e T for * $ k, and
(t ^ (e)) t EA = t TEA E TA. Therefore tA(e) E TW.

We must also show that inputs to W can be modified in certain ways without altering
visible behaviour. Suppose that CA0^ _ E TW, with 0 E 1W", and - T 1W T - =0.

Also suppose that 9' E 1W" with i3' t v = 8 T v. We need to show that there is some
7' E EW" such that a A3A

^ y' E TW , and " ' T v = - T v , and Y'T IW T V = 0.

We will proceed by induction on the length of -'. For the base case, suppose
length(-y) = 0 and hence -1 =). Let -I' = (). Because W is a process and a^A^- E TW,
we know that a E TW. Because W is input-total and 3' is purely inputs to W, we see

4.2. VERIFYING MLS PROPERTIES 205

that a^,3' = ci^/3 '^ ' E TW. Trivially, Y' T v = 0 - T v and -7' T IW T- =0.

Therefore the theorem holds in the base case.

For the induction step, suppose length(-I) = n > 0 and that the theorem holds for all
shorter lengths. Let _y = 6A(e). Since W is a process, ck^ A 6 E TW. By the induction
hypothesis, there exists a 6' E EW" such that there is an altered trace aA/'^6' E TW
and 6'Tv =6Tv and 6'T/WTU= 0.

Suppose that the event e is not visible, i.e., e E U. Then let -y' = 6'. As noted above,
this -y' is a possible extension of a ^8 ' . We also see that 'Y T v = 6' T v = 6 T v = -Y Tv,
and ' 1 IW T -6 = 0. So the theorem holds in this case.

Suppose alternatively that the event e is visible, i.e., e E v. We now divide the proof
into four cases, depending on which processes engage in the event e. The event is either
(i) the input to some buffer, (ii) an internal event for some buffer, (iii) an output from
some buffer and simultaneously an input to process A, or (iv) a non-input of process A.

Case I: e E IB
Let -I' = 6'^ (e). Process W is input-total, and therefore afil^y' E TW. In addition,

t' T v = 5' 1v^ (e) t v = 61 VA(e) = -y ITv and T' 11 TV = 6' 1TW T1V ^ (e) T6 = 0.

Case H: eEEB-IB-OB
Again let -"t' = 6' A (e). e occurs as an internal event in exactly one buffer. The projection
of A'3̂ lA on that buffer's event set can always be extended by an internal event. The
internal event affects no other process. Therefore the argument given for Case I applies
here as well.

Case 1M: e E OB = IA
Since the buffers have no events in common, event e is in exactly one buffer history;
suppose e E Ok. To see that the altered trace can be extended at some point by e, apply
lemma 2 with

A.- (OA^3^6) T Ek
* (f'AIA6 1 Ek E Tk

(CkA#A6) TEkA (e) E Tk

(a^AA6) T Ek T v = (cAilA6') T Ek T v.

Then there exists sequence p E Oj such that

(0! A31A6) T Ek A p (e) E Tk

pTv = 0.

p is now a new sequence of inputs to A. Apply lemma 5 with

S* (aA#^6) T EA

V -* (a^g1 A ') T EA ETA
#-p E IA*

(A 3A6) T EAA(e) ETA

(a^A6) T EA T v = (a^ A^6') TEA T v
PTv = 0.

206 CHAPTER 4. FORMAL METHODS

Then there exists a sequence a E EA', which is the response of process A to inputs p,
such that (Qa^6'^ P) T EA^ao^(e) ETA

or T 1A = p

oTv= 0).

Let -y' = PIAuA(e). Then (^Aft^7') T EA E TA by construction. Also we have
(QAIA y) T EA = (CA 0IA 6 I) T Ek^p^(e) E Tk by construction. For other buffers with

1 k, (aA Y) T El = A(,6A6) T EApT Et = (Aa#A 6) T El E T. Thus aA A.Y1 E
TW is indeed a trace. Its visible projection is unchanged, since -y' T v = 6' 1 A (e) = v.
Finally, -y' T 1W T - = () since no inputs to W were added.

Case IV: e E EA - 1A
Apply lemma 6 with

IL- (QtA# A 6) TEA

V \.* (aA '
6 Ap) T EA ETA

(AC ^A6) T EA^A(e) E TA
(a A6) T EAT v = (^A^6A V) T EAT v.

Then there exists a sequence a E (EA - IA)* such that

(a^,6) t EAA7A(e) ETA

Let -y' = 6'AA(e). Then (a AIgAY) T EA E TA by construction. Also we have
(aAtfA y) T EB = (a A/A 8) T EB E TB. Combining these, aA,,A- ' E TW is a
trace. The visible projection is unchanged, since Y' T v = 6' T VA (e) = Y T v. Finally,
It' T1W V = () since no inputs to W were added.

Since a -I' with the required properties can be constructed in all cases, the theorem
holds. 71

4.2.3 Applying the Theory to Gypsy

Consider what it might mean to require the property of restrictiveness for a Gypsy
procedure. We will not attempt to relate formally the semantics of processes described
above to the semantics of Gypsy procedures. Instead, we will argue informally that
there is a connection. We have modeled the design of SDOS in Gypsy as a collection
of cobegun procedures communicating via buffers. We want to associate the input and
output events described above with the (Gypsy) actions of sending and receiving from
a buffer. Assertions about traces will then become associated with assertions about
(Gypsy) buffer histories.

How might one verify in Gypsy the hook-up property of restrictiveness with respect
to an arbitrary level I? There are two basic problems:

4.2. VERIFYING MLS PROPERTIES 207

1. The Gypsy embedded-assertion approach to stating correctness conditions will only
allow assertions about the properties of single traces in isolation. More precisely,
Gypsy embedded assertions are all of the form:

Va E T, P(a)

where P is some predicate over event sequences which contains no quantifier over
event sequences. Note that each program variable is a function of the past se-
quence of events, and so relations among program variables fall into this form. The
property of restrictiveness is more complicated, since it requires one to show the
existence of a trace, given the existence of another trace. The embedded-assertion
method is not designed to do this.

2. The property of restrictiveness requires a process to be input-total, i.e., always
ready to accept another input. This is never true of procedures described in
Gypsy, which accept inputs only at "receive" statements.

The solution to the second problem is to associate one or more unbounded buffers
with each Gypsy procedure of the design. The combination of a Gypsy procedure and
its associated buffers forms an input-total process.

To solve the first problem, we use the theory of the previous section to decompose
restrictiveness into WNI and other simpler conditions. Then we give a technique for
demonstrating WNI using Gypsy.

Suppose a Gypsy program is composed of a cobegin of procedures, and a collection
of unbounded Gypsy buffers visible to those procedures. Each Gypsy buffer will be
associated with exactly one Gypsy procedure. Further suppose that each procedure is
of the form:

loop
await

each i:integer, on receive mesg from buffer[i];
prog(mesg);

end;
end;

where each buffer[i is an unbounded Gypsy buffer associated with this procedure. The
code 'prog' contains no "receives", and it may contain "sends" to buffers associated with
other procedures.

Then we may (informally) apply theorem 2 to this situation, treating the Gypsy
events of "sending" and "receiving" from buffers as the communication events referred
to in the theorem. We can then claim that this procedure and the collection of buffers
associated with it are restrictive with respect to view v if we can show:

e that each buffer preserves v: the map which takes the event "receive msg" into
the event "send msg" is one-to-one and onto. Let a predicate visible be defined

208 CHAPTER 4. FORMAL METHODS

on the set of messages, and let a buffer "send" ("receive") be an event in view v if
and only if the message sent (received) satisfies visible;

" input-universality: this is guaranteed since all input events occur via the 'await'
statement;

" input-liveness: this will be guaranteed if can show that 'prog' may terminate for
each possible set of preconditions;

" synchronous determinism: this is guaranteed in any Gypsy procedure which makes
no cob~gins, either directly or indirectly, through calls to other procedures. This
can be checked purely syntactically;

" weak non-interference with respect to view v for the procedure.

Since restrictiveness is a hook-up property, if we establish the above facts for each
procedure, we can deduce that the entire Gypsy cobegin is restrictive.

Figure 4.2 shows schematically an example of hook-up in Gypsy. The example is of
a closed system of two communicating processes. The large ovals in the figure represent
the two processes to be proved restrictive. Within each process, all input events are
delivered first to unbounded Gypsy buffers. There may be more than one such buffer
per process. The buffers pass along their input messages to Gypsy procedures satisfying
WNI. In the case of process A, the single internal procedure is WNI; in the case of
process B, a collection of communicating procedures and subprocedures, each SNI, hook
together to form a procedure that is WNI (SNI is composable, and SNI- implies WNI).
Once input-liveness is shown for each procedure, we know that both processes A and
B are restrictive. Between the outputs of one process and the inputs of another, we
may suppose there are arbitrary delays. This will be consistent with the semantics of
Gypsy buffer communication if we assume that the delays do not change the order of
the messages they deliver. Then each delay is simply an infinite buffer, and therefore
restrictive. Each of the five processes in the figure is restrictive, so the entire system is
also restrictive.

4.2.3.1 Verifying WNI using Gypsy

This section will describe our efforts to develop a technique to prove weak non-interference
in Gypsy. The technique presented is not general; it is easy to find examples of Gypsy
procedures that satisfy WNI which cannot be handled this way. However, we have
successfully applied this technique to several examples of trusted type managers in the
SDOS design.

4.2.3.1.1 Approach WNI states that for every trace a there is another trace al
which bears a certain relation to a. (see section 4.2.2.3). The first task in Gypsy,
therefore, is to generate the traces a and at. This involves, in effect, running two copies

4.2. VERIFYING MLS PROPERTIES 209

process B

BUFFER

DS I S D
EE EL1 L

A pre A

B
F

SNI F

,R

Figure 4.2: Schematic representation of a Gypsy cobegin of two procedures. The cobegin
shown will be restrictive if the Gypsy procedures involved meet certain conditions. See
text.

210 CHAPTER 4. FORMAL METHODS

of the program simultaneously - one with all inputs which generates trace a and another
with no high level inputs, i.e. at T I =<>, for trace at. The trace at will be referred to
as the reduced history. The verification is then a demonstration that a T 1 = at T 1.

Given the Gypsy specifications for a particular procedure, generating trace a is
automatic since it is the normal execution of the procedure. The key to generating trace
at is to make a copy of the Gypsy specifications for the particular procedure. Not only
the internal program variables but also the buffer variables must be duplicated. The new
program and the variables therein will be called the shadow program and the shadow
variables respectively. Now running the shadow program with no inputs greater than
level 1, would give us trace at. But, since we want to compare histories, the traces must
be derived simultaneously. Therefore, further constructions are called for. A transformed
program is one in which the original and the shadow program have been amalgamated as
per the guidelines (program transformation technique) to be described in the following
section. The assertions in the transformed program would state, among other things,
that the contents of the original buffer history, taking only events less than or equal to
level 1, will be the same as the shadow buffer history.

4.2.3.1.2 Details of the program transformation technique The Gypsy pro-
gram for the SDOS design is a collection of procedures that are cobegun and communi-
cate through infirite Gypsy buffers. Each Gypsy buffer will be associated with exactly
one Gypsy procedure. For example,

cobegin
procedure A(buffer-a,a);
procedure B(bufferb,b);
procedure C(bufferc,c);

end;

Further, let each procedure be of the form

loop
await
each i:integer, on receive message from buffer[i] then

body;
end;

end;

where each buffer[i] is an unbounded Gypsy buffer associated with this procedure. The
code body contains no "receives" though it may contain any number of sends to buffers
associated with other procedures. Also, cobegin statements will not be allowed within
the procedure since such a cobegin would introduce non-determinism and thus invalidate
one of the assumptions of theorem 2 in section 4.2.2.6.

The way to generate the reduced history is simply to ignore those inputs of inappro-
priate level:

4.2. VERIFYING MLS PROPERTIES 211

loop
await

each i:integer, on receive message from buffer[i] then
if dominates(1,message.level)
then

body.sh;
end;

end;
end;

where body.sh = body with a disjoint set of variables and dominates(11, 12) is a boolean
function that is true if level 11 is greater than or equal to level 12. 1 is an arbitrary
constant level.

Since we want to compare histories, we must run the programs simultaneously. The
transformed program, therefore, is of the form:

loop
assert (output from body) T 1 = (output from body.sh) T I

await
each i:integer, on receive message from buffer[i] then
if dominates (l,message.level)
then

body;
body-sh;

else
body;

end;
end;

end;

The security condition, expressed in the assert statement, is that all times the output
from body-sh restricted to level I is the output from body restricted to level 1. This is
the weakest loop invariant to imply that the original procedure is WNI. The assert
shows that the visible output sequences are equal; the visible input sequences are equal
by construction. Since the assert holds at each input, the interleaving of inputs and
outputs into the complete sequence of external events must also produce the same visible
sequences when restricted to level I in both the actual and purged histories. It must
also be pointed out that if MLS data structures exist in body then the loop invariant
must include the fact that the shadow MLS data structures in body.sh are the MLS data
structures in body restricted to level I.

Using the Gypsy Verification Environment to show the correctness of the above
program fragment will result in a number of verification conditions (VCs) to be proved.
Each of these VCs is associated with a particular execution path through the program

212 CHAPTER 4. FORMAL METHODS

that begins and ends at one of the assertions. In the fragment above each path is one
execution of the loop, beginning at the assert statement and returning to it. The number
of paths produced and the complexity of their VCs are of great practical importance
to the verifier, since the verification process becomes harder when either of them is
increased.

Focus on the running of body and body-sh simultaneously in the case that dominates(i,
message.level) is true. Let new.body refer to the interleaving of steps of body and bodysh.
Running body..,sh after body would be the simplest interleaving. This simplest interleav-
ing results in more VC generation paths than body alone. In fact, if there were n paths
in body then there would be n 2 paths in new-body.

We would prefer to find an interleaving that reduces the number of VC generation
paths. For example, the fragment

if a then b else c end;
in body, which has only 2 paths, would transform to

if a then b else c end; if a.sh then b.sh else c-sh end;
in new-body, which now has four paths. The hypotheses in VCs that would come about
are:

1. Hi: a; H2: a.sh;

2. Hi: not a; H2 a-sh;

3. Hi: a; H2: a-sh;

4. Hi: not a; H2: not a-sh;

It is often the case that a and a.sh are both computed using only values of variables
that depend on visible inputs. Then we can additionally assert that a iff a-sh, and the
pair of if . .. then . .. else statements can be interleaved in a different way, resulting in
new.body of the form:

assert a iff x.sh;
if a then b; b-sh; else c; c-sh end;

The number of paths in new-body is now equal to that in body. Since the original
and shadow programs refer to disjoint sets of variables, their steps can potentially be
interwined in any manner, so long as the order within each program is unchanged. The
following rules show ways of interleaving the steps of various program constructs. Each
step reduces the number of VC generation paths. Whether a particular rule is used
depends on whether the new assertions generated can be proved.

Cases

* assignments

in body:

4.2. VERIFYING MLS PROPERTIES 213

a:= b;
in new-body:

a := b;
a-sh :=b.sh;

* casesplit

in body:
case x is yi:

in new-body:
assert x = yi iff x-sh = yish;
case x is yi:

" send to buffer

in body:
send x to buffer1;

in new-body:
send x.sh to bufferl-sh;
send x to buffer1;

* if .. then ... else

in body:
if x then y else z end;

in new-body
assert x iff x-sh;
if x then y; y.sh else z; z.sh end;

* function/procedure calls

in body:
p := function(q);

in new-body:
p := function(q);
p.sh := function(q.sh);

in body:
procedure(x);

in new-body;
procedure(x);
procedure(x-sh);

214 CHAPTER 4. FORMAL METHODS

0 loop

Any of the above constructs embodied within the loop could be transformed as
above. Here we consider the interleaving of iterative loops with counters that
index arrays, sequences, etc. If the counter and its shadow index equal sequences,
we combine both loops into one and use the same counter for both. Then the
above cases can be used to interleave the steps within the loop body. On the other
hand, when the sequences are unequal the following more general transformation
is recommended:

in body:
i := 0;
loop
if i ge x then leave;
else

i i + 1;

actions-on(y(i));
end;
end;

in new-body:
i := 0;
i-sh := 0;
loop
assert x ge x.sh and

i.sh = size(y(1..i) T 1) and
y(i) = y-sh(i.sh);

if i ge x then leave;
elif dominates(l, y(i).level)
then

i : i + 1;
i-sh := i.sh + 1;
actions-on(y(i));
actionson(y.sh(i..sh));

else
i + 1;
actions-on(y(i));

end;
end;

Before closing this section, a brief note on assert statements is probably in order.
Consider the following specification segment:

assert A;

4.2. VERIFYING MLS PROPERTIES 215

assert B;

assert C;

If information in A is needed to prove C, then A should be carried through every
assert till C, i.e. the specification would look as under:

assert A;

assert B and A;

assert C;

The design specifications for the various type managers and the kernel are in Ap-
pendix A. Appendix B has the transformed specifications for the file manager that was
verified using the above technique.

4.2.3.2 Gypsy Subprocedures

The Gypsy design of a process will often involve the use of Gypsy subprocedure calls.
When the program transformation method for verifying WNI in Gypsy is used, we find
that the subprocedure call can be handled in several different ways. This section will
discuss a sufficient technique for decoupling the proof of non-interference for a procedure
from the proof of non-interference of its subprocedures.

Consider a procedure of the form

procedure caller(inbuf, outbuf: buftype) =
begin

var mesg: mesgtype;
var v: vartype;
loop

receive mesg from inbuf;

P(v, outbuf);

end;
end;

216 CHAPTER 4. FORMAL METHODS

where the ellipsis may contain sends to outbuf, but no receives. Let the subprocedure
P be of the general form:

procedure P(var v: vartype; outbuf: buftype) =
begin

body;
end;

where the body may contain sends to outbuf. We have shown a single non-buffer pa-
rameter, but our result could be generalized to any collection of parameters.

The program transformation approach to verifying WN[will produce the following
transformed procedure:

procedure caller-trans(inbuf, outbuf, outbufsh: buftype) -
begin

var mesg: mesgtype;
var v, vsh: vartype;
loop

assert purge(outto(outbuf, myid), 1) -
purge(outto(outbufsh, myid), I);

receive mesg from inbuf;
if dominates(l, level(mesg))
then

P(v, outbuf);

P(vsh, outbufsh);

else

P(v, outbuf);

end;
end;

end;

where the names ending in "sh" denote objects of the purged history, and the symbol
"I" denotes an arbitrary level. In order to prove the assert statement in 'caller-trans',
it will usually be necessary to relate the values of the "sh" variables to the values of
the ordinary ones. This relation typically will show that 'vsh' is the same as 'v', except
purged of contents which would result from processing at levels not less than I.

The assert will not be provable without more information about the properties of
procedure 'P'. There are three ways in which more information about P can be imported
into 'caller-trans':

4.2. VERIFYING MLS PROPERTIES 217

1. Calls on P may be expanded in-line in procedure 'caller' by instantiating the
code 'body' with the actual parameters substituted for the appropriate formal
parameters.

2. An exit specification for P may be found which is sufficiently strong that security-
relevant facts about the output of P can be compared for P(v) and P(vsh). It is
sufficient, for example, if the output value of v can be expressed completely as a
function of the input value of v.

3. The program transformation technique may be applied directly to P to derive
security-relevant facts needed in the proof of 'callertrans'.

There may also be other methods, but these three are the ones we are familiar with.

The second method is the simplest, and the most in harmony with the Gypsy method-
ology, since one can use the specifications for P directly in the proof of 'caller.trans'.
However, finding a function expressing all the necessary facts about the action of P may
be quite tedious. The third method is of interest in the remainder of this section; it
allows security verification of P to proceed independently of the security verification of
'caller', without the need to find a functional form for P.

In many cases, the following conditions can be met:

" The elided code in the body of 'caller.trans' can be merged so that P(vsh. outbufsh)
is called immediately after P(v, outbuf);

" A function 'call-level(v: vartype) : level' exists, associating a level with each call
of subprocedure P;

" A function 'purgev(v: vartype, 1: level) : vartype' exists, which removes from v all
data associated with levels not dominated by I.

The third condition may be trivially generalized if the single formal parameter v were
to be replaced by a list of formal parameters.

The program transformation technique may now be applied to P itself to produce:

procedure P.trans(var v, vsh: vartype;
var outbuf, outbufsh: buftype) =

begin
entry vsh = purgev(v,l) and

purge(outto(outbuf,myid),l) = purge(outto(outbufsh,myid),l);
exit vsh = purge(v,l) and

purge(outto(outbuf,myid),l) = purge(outto(outbufsh,myid),l);
if dominates(l, calIlevel(v))
then

body

218 CHAPTER 4. FORMAL METHODS

bodysh
else

body
end;

end;

where 'bodysh' is the code 'body' with 'vsh' substituted for 'v' and with 'outbufsh'
substituted for 'outbuf'.

To understand the reason for this transformation, consider the interaction of the
caller procedure and its subprocedure P to be a sequence of message-passing events.
Both caller and P are processes which obey the 'subroutine protocol': when one sends
to the other, it surrenders control and waits for the other tj send new messages (and
control) back to it. Consider each transfer of control to consist of a stream of messages,
at many security levels. This stream first passes the current contents of variable v
and information about outbuf, and the stream is then terminated by a single message
transferring control.

The contents of variable v may be thought of as a set of data items. Different items
may be conceptually "labeled" with different security levels. The function 'purgev(v,l)'

must strip away all items whose "label" is not dominated by 1. The stream of messages
which passes the contents of variable v is composed of messages for each data item in
v, and the level of each message will be the join of the item's "label" with the level
"call.Jevel(v)". (A message in the stream is at least as sensitive as its contents, but
also as sensitive as its very existence, which is "calLlevel(v)".) The final, terminating,
message has level "call-level(v)", and a subprogram returning control sends this control
message at the same level as the previous control message sent by its caller.

Verifying the transformed procedure 'P-trans' corresponds to proving the property of
strong non-interference (SNI) for procedure P. This property says that for any level I and
any history of message-passing events, a new history could be constructed by purging all
events not visible at level !, including both parameter passing events and control events.

If the transformed procedure 'P.trans' can be proved, the proof implies that the
following procedures could also be proved. Therefore, the specifications for these proce-
dures can be manually imported into the proof of 'caller-trans'.

Single calls P(v, outbuf) in 'caller-trans' may be replaced by calls Pl(v, outbuf),
where

procedure Pl(var v: vartype; var outbuf: buftype) -

begin
entry not dominates(l, calllevel(v));
exit (assume purgev(v,l) = purgev(v',l) and

purge(outto(outbuf, myid), 1) =
purge(outto(outbuf', myid), 1));

'body';

4.2. VERIFYING MLS PROPERTIES 219

end;

Any pair of immediately juxtaposed calls to P(v, outbuf) and P(vsh, outbufsh) may
be replaced by a single call to P2(v, vsh, outbuf, outbufsh), where

procedure P2(var v, vsh: vartype;
var outbuf, outbufsh: buftype) =

begin
entry dominates(l, callevel(v)) and

vsh = purgev(v, 1) and
purge(outto(outbuf, myid), 1) =
purge(outto(outbufsh, myid), 1);

exit (assume vsh = purgev(v,l) and
purge(outto(outbuf, myid), 1) =
purge(outto(outbufsh, myid), 1));

'body';
'body.sh';

end;

Of course, there is no automated Gypsy support for this replacement procedure. If it
is more convenient, the procedure P1 may be proved directly with the code 'body', and
the procedure P2 may be proved directly with the code 'body; bodysh'. In fact this
method is slightly weaker than the one described, but may still export specifications
strong enough to prove 'caller-trans'. We have appended the two conditions together in
procedure 'P-trans' to show that a single program transformation step can produce the
necessary verification conditions.

How are the functions 'call.Jevel' and 'purgev' to be chosen? They should be chosen
to support the proof of WNI or SNI in the calling procedure 'caller-trans'. Almost
certainly 'calIJevel' will be chosen to equal 'level(mesg)' in all cases. The function
purgev will be chosen on the basis of the effective sensitivity level of data contained in
"components" fo v. For example, if v is a multilevel set of records, where each record
was added in a separate invocation of 'caller', then purgev should remove from v all
records added during invocation at levels not dominated by 1. If v is a scalar whose
content has been influenced by calls at level I, then purgev should return the constant
initialization value of v if I does not dominate I.

Chaining of subprocedures is possible. In other words, subprocedure P may in its
turn call on subsubprocedure Q. If Q is verified separately using the program transfor-
mation technique, then conditions about calls on Q may be imported (manually) into
transformed procedure 'Ptrans'.

220 CHAPTER 4. FORMAL METHODS

4.2.4 Extensions to the Theory

In this section we describe several modifications to the theory of restriction. The first
is merely a variation on how one can use the level fields of a message to represent level
information and is completely consistent with the standard theory. The second is called
input-limited restriction and it is used for hooking together processes that are only secure
under certain limitations on the inputs. The last generalizes restriction by allowing some
facts about higher level inputs to interfere with lower level processing. A generalized
hook-up theorem is proved.

4.2.4.1 "True" Levels for messages

In our normal paradigm for security, each message event is associated with a level. This
level indicates the sensitivity of the message and is used to guide the secure handling of
messages. A process is restrictive if it stamps levels on output messages so that infor-
mation does not flow from higher level input messages. Normally levels are associated
with messages by recording the level in a special field of the message. However, if for
some reason, the value in this field cannot be assumed to be correct, proving a process
restrictive will not be enough to know that it is secure. We discuss two situations in
which this arises.

In the first case we must use the "true" level of the message rather than the level
field in the message when proving restriction. For example, a message from an untrusted
process may not have a reliable level field. Therefore, its security label should be set
depending on the true level of the sender. In this case we must prove restriction based
on the 'true security level' and not the level in the label field.

We can also change the way messages are labelled to aid in building certain kinds
of non-mandatory proofs. The basic idea is to use more than one level field. One field
is used for proving restriction and the other is used to ensure higher invisibility of the
transactions. (In practice, there may not need to be an explicit secondary field, since
it may be computable from the content of the message.) A message may have some
low level effect, so in order to show restriction we may need to assume the originating
request is also low. But the actual information which is visible may be quite small. So
by an auxilliary security argument we can more specifically say what will be visible,
and hence more specifically describe why a low level message does not truly downgrade
information.

4.2.4.1.1 Applications The first technique described above will be used in proving
the restrictiveness of the message switch. When the message switch receives a message
from a single-level process, it cannot trust the label supplied by that process, and must
supply the correct, "true", message label itself.

One potential use for the second technique is to show more carefully the effects of a
logout. It is possible to construct the Gypsy specifications for authentication so that the

4.2. VERIFYING MLS PROPERTIES 221

apparent level of a logout is at the level of the user, while the mandatory label is low.
We then show in each of the mangers that handle logouts (and their consequent effects),
that they are restrictive both in the case when we assume that the level of the logout is
the true level and in the case when we assume the level is that in the mandatory level
field. One exception to this: a new user of a terminal is able to see the effect of the
logout acknowledgement for a previous user. The new user is now able to log in. This
is where the mandatory level needed to be low. While the original logout request was
in some sense low, its actual impact was just that a resource can now be determined
to be available. In fact, even this is really only visible to another user if the logout is
a consequence of a line release. We can then tell the user to avoid using a pattern of
line releases which will reveal high level information. In the actual Gypsy specifications
provided, we have not included the code to fully justify this argument. The reason is that
the added degree of assurance gained is not sufficient to justify the added complexity
of the proofs. It is anticipated that as the technology of security verification improves,
that this sort of technique will be desirable.

4.2.4.2 Input-Limited Restrictive Hookup Theorem

4.2.4.2.1 Motivation It is sometimes the case that a process is restrictive only
under the assumption that its inputs will satisfy some limitation. The process is input-
total in that it will accept any input. However, it is only guaranteed to behave securely
if the inputs are of a specified kind. Hence if we can prove both that a process is
input-limited restrictive and that when connected its inputs will in fact be of the right
form, then the process will behave "securely". In the following, we first give a formal
definition of input-limited restriction and then we provide a justification as to why it
is appropriate. We then argue that, under the appropriate conditions, this property is
composable (i.e. that we can hookup two input-limited restrictive processes to form an
input-limited restrictive process).

4.2.4.2.2 Definitions A condition IL is an input limitation on a sequence of
inputs if and only if (s satisfies IL implies that every initial subsequence of s satisfies
IL).

A process is input-limited restrictive with respect to input limitations ILi on
each input line i if and only if

for any a^3^-t that is a history of the process, such that g is all inputs
(possibly an empty sequence), and with the input history of aA 3̂ aS7 from

line i satisfying IL for every i, and for any modification of,8 / to 8yA.7I by
adding or deleting input messages 1, such that the input history from line
i of a~j3f^A.7 still satisfies ILi for every i, it is possible to find a -y" which is
the same as y' except on the outputs with level 1, so that ^ is a
possible history.

222 CHAPTER 4. FORMAL METHODS

Note that this is equivalent to ordinary restriction if we demand all the IL,'s be
true. Under this case, to see that this property implies restriction, observe that the
modifications in the hypothesis of restriction are just a special case. Conversely, to see
that restriction implies this property under this case, first remove all of the high level
inputs in -1 and then use induction to successively add the high level inputs of -I' (making
adjustments to the high level outputs).

4.2.4.2.3 Justification The justification of the standard definition of restriction is
that a low level user cannot deduce anything about the possible high level inputs. With
the new input-limited definition we cannot claim this result. However, if an entire system
can be shown to have this property, then the only input limitations will be limitations
on users (and other input devices). Therefore, all that can be deduced is that high
level inputs must be arranged with respect to the low level history so that the combined
history is possible. For typical applications of this property, this will not pose any
security problem. For example, suppose an input device on a line which is designated
as top-secret only sends top-secret inputs. Now suppose the fact that the line was to
be used in this way was made public. Then an unclassified user could infer that no
secret message will get sent down that line. But this is really just learning unclassified
information. In the applications for this project, the input limitation will be that a user
will not do a writedown. An inference based on this fact is clearly not a security leak.

4.2.4.2.4 Hookup Theorem We make the following claim.

Claim: Input-limited restriction is composable, i.e., it satisfies the following hookup
property.

Let P, have input lines il to in and output lines ol to o,. Let P2 have input lines ji
to jm and output lines P, to pm.

Let P1 be a process with input limitations: 11 to I, on lines il to i, and let P2 be a
process with input limitations: J1 to J, on lines j. to j,.

For simplicity, let us suppose that we are trying to hook up P to P2 with i1 to P1
and j, to 01.

Suppose P and P2 satisfy input-limited restriction and have the following output-
limitations:

* In P we can prove: Ii and 12 and ... and I,, for il to in respectively -- J, for o
(i.e. for any trace t whose inputs satisfy 11 to In, the outputs on line I satisfy J).

* In P2 we can prove: J1 and J2 and ... and J, for jl to jm respectively - 11 for
Pi.

Now, let 12 and 13 and ... 4 and J 2 and J3 and ... Jm be the combined input
limitations on the joint process. Then we claim that the joint process is input-limited
restrictive with respect to these conditions.

4.2. VERIFYING MLS PROPERTIES 223

Notice that for any history A/^A^y which satisfy these limitations, we can use the
output assertions to show I and J1 hold on the internal signals (by induction).

Given the suppositions above, a proof that the processes will hook up and preserve
input-limited restriction follows essentially the same form as the hookup theorem for
standard restriction. We sketch the basic idea.

Let a^A A f be any history of the joint process which satisfies the input limitations
(and where 3 is inputs), and let 8'A^/t be a modification to 3^-y gotten by adding or
deleting high level inputs (ie. not below 1) such that a^8^-1' < still satisfies the input
limitations.

Now, alternately fix the histories on side P, and P2. At the beginning of each fixed
stage we have a history with extra high level inputs added and we can apply input-limited
restriction to adjust it. Note that we must use the output assumptions to know that the
new input history is still allowed. As in the proof of the standard restriction theorem
we must make sure that we make forward progress in accomplishing the adjustments.
This is done in exactly the same way. (This is the reason for having a separate i and
-y in the definition.) As this is a straight-forward transformation of the proof, we direct
the interested reader to [Ulysses 871 to see how this is done in the standard restriction
theorem.

4.2.4.2.5 Combining with the WNI Approach In theory, it should be possible
to combine this idea with the WNI methodology. Assume the input-limitations on the
input ports hold at the beginning of the execution history. Then proceed to use the WNI
techniques and where needed use the imported assumption of input-limitation. Also
prove the required assertions about the output ports. It may be useful to use auxiliary
variables to keep track of what has transpired (i.e. state variables). Unfortunately, there
is no simple way to do this in Gypsy, because one cannot assume some condition on all
of the inputs. Nevertheless, it is hoped that with improved technology such a scheme
will be possible.

4.2.4.2.6 Examples The principal purpose of this theorem is to handle possible
hookup between system components which do not have labeling. For this project, the
principal application of this result is the hookup between users and the system. It may
also be useful in eliminating code which will not be used, when a particular combination
of inputs cannot occur. We will briefly discuss the possibility of eliminating code for the
kernel which would handle multiple SetProcessBinding operations for the TIP.

Another possible case where this result would be useful is for communication lines
which are assigned one fixed level. In such a case, we should be able to prove that
all inputs and outputs along this line are at that level and so should be able to prove
restriction without directly checking labels in the actual code. (A slight efficiency gain.)

It may also be convenient to build other kinds of processes which do not have to
label all of their messages with an explicit security level.

224 CHAPTER 4. FORMAL METHODS

4.2.4.3 Limited Insecurity

4.2.4.3.1 Motivation Recent work in computer security has centered around the
notion of information not flowing in certain ways. For instance, there have been attempts
to make precise the idea of information not flowing from one level to another and to
verify this property of models of actual systems.

A limitation of this approach is that in most real systems information does flow even
between levels where it's not supposed to. This makes it difficult to prove that it doesn't.

One example is that of downgrading. It is common that for the sake of flexibility a
system will include a downgrading facility. The effects of this high-level act are clearly
visible to a lower-level user, as they are supposed to be.

There is also the case of limited access resources. Some system components can be
accessed by only one user at a time, and will return a reject message if another tries to
do so. So if a high-level user gets there first then this might be visible later to anyone.

Slightly different from these is the instance of uncertainty of the level of information.
When someone tries to log on, it is unclear at first what should be the level of that
message. There are any of a number of ways of formally labeling this message, but its
real effect will be at the actual level of the user, which can be determined locally only
after receiving the acknowledgement from the password database.

We would like to generalize the current theory to handle these cases, in part because
some of the work would then be done for us. Yet this desire is not just pragmatic, it also
follows from the ideas themselves. The intuition behind restrictiveness, the best current
example of a security property, is that all the information possibly available to a user at
level 1 is unaffected by the inputs at levels not less than or equal to I. A crucial part of
the formalization of this property is the restriction operator T 1, which takes a sequence
of messages and returns the subsequence of those messages at a level less than or equal
to 1. This is used to define the notion "everything that an I - user could possibly know".
But if some high-level information does not remain strictly above 1, then T I is not the
right restriction operator.

At this point one could attempt a simple generalization oft I. Instead of just throwing
away a message with a high label, one could replace it with a message containing all of
the information less than or equal to I. In the examples above, the message "downgrade
X" would be replaced by "write(contents(X))", possibly with certain items, such as the
identity of the user, also deleted. In a limited access process, the high-level command
"I want you to do such-and-such" would be replaced by "Somebody wants to use you
for something". For a login attempt, however it is actually labeled by the system, we
would consider it at the level of the user, assuming that the users and their levels don't
change.

Allowing for alterations of messages such as these, we could then define the view
of a system to a user, f v, a function from traces to traces, inductively on the length
of the trace: () f v - Q, and ax f v = (a v)m(a,x), where m is some appropriate

4.2. VERIFYING MLS PROPERTIES 225

function. Presumably m(a,x) = z if the level of z < I, and is as suggested by the
examples otherwise. Note that we allow the previous history as a parameter to m, as in
the downgrading example.

Such an attempt, while mathematically sound, is in some measures inadequate. In
the downgrading example, while the locus of information transfer is restricted to that
one message, the content of the transfer is really unclear. On what does "contents(X)"
depend? For limited access processes, presumably most of the calls to them do not
interfere with one another, so by noting them all we carry around a lot of baggage
whicn makes it seem as though more information is being transmitted than actually is.
Regarding logins, we had to make the assumption that the users and their passwords
are constant, which is related to the problem that the suggested function m cannot be
computed locally.

All of these problems are related to the fact that we know what high-level information
is available only retroactively. The downgraded message "write(contents(X))" should
depend only on the writes to the file. We would like to retain those writes in a v and
make m a function not of a and x but of a 1 v and x. But any file might be downgraded,
and saving the writes to all of them would defeat the purpose. m knows to retain writes
to a downgraded file only retroactively. Similarly, the only holds on single-user processes
of importance are those that later cause a reject message. Therefore m should retain
the traces of only those requests, necessarily retroactively. For attempted logins, the
situation is the clearest: the level of a login attempt is the level eventually assigned by
the acknowledgement.

Another advantage of this more accurate modeling of real systems is that we are
interested in not only what data somebody gets, but also when. As an example, when
downgrading we would like to know not only that what the low-level user saw depended
only on the writes to the file, but also that it didn't depend on even that much until a
certain time.

As before, the restriction operator can be defined inductively, using the auxiliary
function m. This time, though, whether to append m(a, x) or not may depend on later
messages in the sequence. Also, m(a, x) is to be uniformly computable from a v and
x, so we know that the information leaked is contained in what we have been saving.

In what follows, we present a formalization of this latter approach. Examination
of the details of this program reveals manipulations not found in the development of
standard restrictiveness nor suggested by the intuitions above. We will try to explain
and justify them as they occur.

4.2.4.3.2 Processes and Views A process P is as defined in section 4.2.2.2.

A limitable process is a process P, along with a subset N of E and a function
m : E* x E x E" - -- > E. These extra objects N and m are enough to allow us to
define the restriction operator Ir and associated function m described earlier, to allow
for modeling limited information flow. To do this we first need some more definitions.

226 CHAPTER 4. FORMAL METHODS

For a E E" and x an occurrence in a of an event, a < x is the initial segment of
a before z and a > x the final segment of a after x. () is the empty sequence, which
we also assume to be an event. This way m can return (), allowing for am(b, e, c) = a.

T S : E' - -- >> E is the standard operation of restriction to a set S of events, defined
inductively: () T S = (), and ae T S = [a T Sle if e E S, a T S otherwise.

As described above, f v takes a sequence a and replaces each event with its low-level
content (as given by m). So a f v is actually defined using an auxiliary notion ft v, a,
itself defined inductively on the events in a: 0 v,a = d, a'e f v,a = [a' ft v,alm(a'
v,e,a > eT E/N), a tv = a tv,a.

Some explanation is in order. In general, m is the identity on some set S, such as
the events at or beneath a given level. If n returns (off of S, then ftv =T S. Since we
want to allow for some information to trickle through, we have m possibly extracting
some information from an event e. On what parameters should this extraction depend?
Clearly it depends on m itself, which is assumed to be public knowledge. It should
also depend on the previous history, or at least that part which is potentially visible,
(a < e) t v, and also the current event e. It also must depend on future events, a > e,

as described. But if we allow a > e as a parameter, we defeat the purpose of trying
to pinpoint the influences upon t v. Using a > e as a parameter, we might permit
highly classified information that it contains to trickle through. Therefore we select a
presumably large body of events N to be the neutral events. They don't have the power
to influence decisions about information flow. We focus all potential factors into the set
E/N of non-neutral events.

Notice that we understand E to be sufficiently abstract. Sometimes m will clear its

middle argument of much of its information, leaving something which could never be
an actual message in a real system but which we consider an event. For instance, m
might remove the client and the level from a downgrade message, leaving only that a
certain file is to be downgraded. Such an event might never appear in any trace in T by
virtue of its ungrammaticality, but we still consider it an event since we need it in the
pseudo-histories at v.

4.2.4.3.3 Examples The problems adduced as motivation were the login procedure,
limited access resources, and downgrading. By way of illustrating this approach, we show
how to express what is actually happening in these cases using our language.

To model the login, we consider a system with three components: a human user,
the local host, and the login authenticator. The human's language includes the output

"login request" at level X, the inputs "request approved" at each level I except X, and
the input "request denied" at X. The host has all of those events with inputs and
outputs reversed, along with the output "login check" at X, inputs "check approved" at
each I except X, and the input "check denied" at X. The authenticator has the "check"

events of the host, with inputs and outputs reversed.

A login attempt would consist of a request initiated by the human and passed along

4.2. VERIFYING MLS PROPERTIES 227

to the authenticator. This is at level X since so far no one outside of this small group
can know anything about this sequence. The authenticator then consults its database,
and either approves the login at a fixed level, or denies it again at an isolated level. This
reply is then passed along to the hunian.

How would we define m to represent the view at level l? Requests and checks are
invisible if they have not yet been confirmed, so m(a, "login request or check",)) = ('-
Once the check is approved at level 1, the check-event that caused it is visible at 1: m(a,
"login check", "check approved at 1") = "login check at 1". Note that at this point "login
check" is visible at 1, while the "login request" that caused it is still at X, invisible to I.
This is for reasons of coherence. The host now knows enough to reclassify the request;
that is, mh,8 t could use the non-neutral event "check approved" to reclassify the request
it received from the human, but the human couldn't. To retain the coherence of the
local m functions, the original request cannot yet be affected. The next event, though,
is that the host transmits "request approved at P" to the human, and both processes
reclassify the initiating request to 1: r(a, "login request", "request approved at 1") =

"login request at 1". The neutral events are everything but the approvals.

For a limited access resource, consider a file accessible to at most one user at a time.
The languages for the clients each include outputs open, close, read, and write, and
inputs confirmed and denied, at all levels. The language for the file is the same, with
inputs and outputs reversed. The file will confirm an initial "open", then confirm any
future sequence through the first "close", and wait to confirm the next "open". Anything
else it denies.

When there is no leak, it suffices to use the standard restriction operator: re(a, X, b) =

x if level (x) _ 1, 0 otherwise. The only time there is a leak is when 1 tries to open
the file and either it is currently being used by someone I or, following an earlier
denial, the request is now confirmed. In the first case, the denial is tagged with an
identifier for the currently operative "open". This is necessary so that in the inductive
definition of f we know exactly which "open" to retain. m(a,open(tago),denial(tagl))
= open if tago = tagl, 0 otherwise, and m(a, denial(tagi), 0) = denial. Observe that rn
does strip off some information from open(tago) and denial(tag1), since all that matters
to the latest request is that somebody somewhere already has it. The second case is
handled similarly, with the confirmation tagged with an identifier for the close that made
it available. The neutral events here are everything except the denials.

For downgrading, the non-neutral message is "downgrade(X)". It makes visible the
previous writes to X, removing all information such as client identities and levels from the
writes and leaving only the content: r(a, write(tag), 0) = 0; rn(a, write(tag), downgrade)
= write.

4.2.4.3.4 Generalized Restrictiveness Given f v as above, there is a correspond-
ing notion of restrictiveness, of limited similarity to the standard one:

228 CHAPTER 4. FORMAL METHODS

Va, a' E E' and x E N, if

afv= a'fv and
ax, at E T

then 3b' E E* and 3yi E E so that

ax f v = alb'y f v, a'b'y E T,
b' T I = (, and b'y E N'.

We can assume without loss of generality that a ft v = a'b'ft v, simply by truncating
the hypothesized by.

A restrictive process is a limitable process which satisfies restrictiveness.

First we argue, necessarily informally, for why this is a useful property to use. Then
we discuss its relationship to standard restrictiveness.

A sane notion of security is non-deducibility. A certain set of events w is secure from
the view v if:

for any trace a and sequence u E w*
there exists a trace b such that

aftv = bftv and b T w = u.

With this property, a viewer with access only to a f v can deduce nothing about
a T w. Usually the information we want secured from v are the inputs not in some set
I. In this context (also assuming f v = T 1), these ideas are intuitive, precise, and their
formalization is implied by restrictiveness.

In our more general setting such simplicity does not work. We might try to have w
be those inputs with no v - effect. For starters we want more than that. If an input
has a v - effect then it would not be in w, but if two have the same v - effect then we
would not want to be able to distinguish between them. Even more seriously, "inputs
with no v - effect" can not be well-defined, since m depends on the previous and future
history a as well as the current message x. Maybe sometimes an input is visible and
other times not.

Our way to handle such problems, especially the second, is to consider deducibility
of information in context, as a trace is being generated. The system is secured from
deducibility if we cannot predict the future, nor find out that a previously reasonable
guess as to the actual history was incorrect. This is meant to be necessary only when
all the new events are neutral, so we can assume as much. That is, suppose that the
real history a has been unfolding, and we have guessed that the actual history is a',
based on our view v: a f v = a' f v. Then we are given the opportunity to guess those
inputs with no v - effect, using only neutral events. Think of unrolling more of a' until
all inputs before the next v - visible event occurs. In response, more of a is revealed,
up to the next v - event, and including only neutral events. Note that we still have
a ft v = a' f v. Then the v - event x is revealed. Since it is also neutral, there is a way
of extending a' to catch up with this new event. Without changing our earlier guess,

4.2. VERIFYING MLS PROPERTIES 229

nor our arbitrary prediction about future inputs, we can extend a' by neutral v-invisible
non-inputs b', and then another neutral event y visible to v. The nature of y cannot
be restricted beforehand, since m may be one - to - one, determining y completely.
Still, in the general case we have circumscribed those events about which we can deduce
something to those that are v - visible. Of course, given a particular m to analyze we
can hope to do even better.

The assumption that all new events in sight are neutral is necessary. Suppose that
a and a' are the same except that a includes a session in which a high-level user writes
a file. If we extend a by a (non-neutral) "downgrade x", that will affect the beginning
part of ax v. There's no way that the beginning part of a' can be so affected by any
extension. If a non-neutral event is introduced, we may have to revise our earlier guess.
As phrased above, we give up the game. A direction for future research is to examine
what changes we might be able to introduce to a' to retain some extension property.

Our restrictiveness implies a limited form of standard restrictiveness. Using standard
notation, to show standard restrictiveness, we are given certain a, b, c, a', and b', and have
to find a c' with no inputs out of v. If c has non-neutral events this may not be possible,
so assume it doesn't. Consider the events of c one by one. Use our restrictiveness for
each to find an appropriate extension with only neutral events, and at most one input
out of v, that one being visible. So we can find a c', not with no non - v inputs, but
whose only non - v inputs are v - visible, always avoiding E/N. This is the best we
could hope to do, given the set-up, and indeed it works.

4.2.4.3.5 Coherence and the Hook-up If P0 and P are two processes, they co-
here if each common event is an input to one and an output-from the other. If they
cohere, we can define the hook-up P0 #P 1 as having events the union of the two sets of
events, inputs the union of the inputs minus the common events, outputs the union of
the outputs minus the common events, and traces {a : a T Ei E T,}. If the P cohere
then P0 #P is a process.

If the Pi are limitable processes, with associated functions mi and sets Ni, they
cohere if

* they cohere as processes,

" intersection(No, Ej) = intersection(NI, Eo),

" for a, b E E- and x a common event,
mo(ao, x, bo) = m1 (a,, x,b,)
where, a = a T E,, and similarly for bi and

" if x is not in E(1-) then m,(a < xftv,aj,x,ai > xTE/N) is also not in E(I-j}.

If the P cohere as limitable processes, we can define the process P = Po#P by the first
coherence property. Let N = union(NO, N1). By the second clause, we don't lose any

230 CHAPTER 4. FORMAL METHODS

non-neutral events. Let m: E' x E' - -- >> E be m(a, x, b) = m(a,, x, b,), where x
is in E,. This is well-defined by the third requirement, and induces t v : E' - -- > E".
By the last, aftvTEi = aT Eiftv.

Incidentally, the final clause is not just an technical convenience. It is necessary for
security reasons. If mo(a,x,b) is a low-level input from P1, but x g El, then P does
not know to cover up for P0's lie. This informal leak can be expressed formally.

4.2.4.3.6 Hook-up and Generalized Restrictiveness We would like to have that
the hook-up of two (generalized) restrictive processes be (generalized) restrictive. This
is not true, as the following example shows.

Let E0 = (', 12, 03), E1 (I", 02, 13). 12 = 02, 13 = 03, and.all other symbols are

distinct. A symbol with an I is an input, an 0 is an output. Let To = Ij union I'E6;
T, = I"1- union E 1/(I")EI. Let Ni = Ei, and m(a,x,b) = 0 if x = I' or I", 1/02
otherwise.

It is easy to check that each P is a process (input-total, closed under initial segments,
and disjoint inputs and output) and is restrictive. Furthermore, the processes cohere
and the mn cohere. Nonetheless, Po#P is not restrictive. Let a = I', a' = I", and
z = 03. Notice that the aspect of retroactive changes is irrelevant here; even in the
simpler case of replacing a message x by m(x) we would have the same example.

The problem is that we need a certain amount of coordination between the processes.
Each process agrees on what the restricted trace should look like, and can accommodate
that with a real trace, but each insists that the real trace contain an input to itself.
Neither is willing to put out.

Therefore, we say that a process P puts out if, whenever m(a t v, x, (0) is an output,
ax E T and x E N, there exists b and there exists y so that aby E T, ax t v = aby t v,
b E (N/I)-, and y is a neutral output.

Theorem: If P0 and P1 cohere as limitable processes, and each is restrictive and puts
out, then P0#P 1 is restrictive and puts out.

Indication of proof: First we show restrictiveness.

Given a,a', and x, we must find appropriate b and y. If x is not in E(1 _.) then
apply restrictiveness to P, only. This produces b and yi. Let b' = b and y = yi. The

important points to note are that PI-i) finds this acceptable because all of the shared
messages in b are inputs to P(I-i), which is input-total. Also, t v is unaffected on a'
because b, contains only neutral elements.

If x is a shared event, let i be such that m(a t v,x, 0) is an output for P. Use
restrictiveness on P(l-i) to get b(1-i) and y(I-i). Extend a' by b' 1_i). Any new common

event is an input to Pi. Now apply restrictiveness for Pi to a, and a. followed by these
new inputs. The latter is a trace by input totality and has the same view as a, by the
coherence of m0 and ml. Extend a'b(1_, by b. If y, is an output, extend again by y,.

4.3. VERIFICATION OF THE FTLS 231

If not, use the putting-out property. This yields b!. and y", which can be so appended.

The putting-out property is even easier to check. If m(a " v, x, ()) is an output, then
x is not a shared event. Therefore one can apply putting-out to the Pi such that x is in
Ei.

4.3 Verification of the FTLS

One of the goals of this project has been to formally verify that the SDOS design meets
the requirements of the SDOS security policy. In order to do this, both the policy and
the design must be stated in precise language. The design was expressed first in section
3.1, but again in the more precise language of Gypsy in section 4.1, the Formal Top-Level
Specification (FTLS). The security policy was stated first in section 2.1, but again in
the more precise language of possible event histories in section 2.3, the Formal Model.
The work that has been done toward proving the FTLS to be a correct implementation
is described in this section.

Virtually all of the formal verification work accomplished during this project was
directed toward proof of multi-level security of SDOS. In this work, we have used ex-
tensively the theory of multi-level security developed in section 4.2. Also, for proving
the restrictiveness of SDOS components in Gypsy, we have sometimes used the program
transformation technique developed in that section.

Our original intent was to provide an explicit mapping from all of the constraints of
the Formal Model to constraints expressed in Gypsy. However, little work was directed
toward the constraints other than those on mandatory information flow. There are
several reasons for this, some theoretical, some practical. Other properties required by
the security policy were considered either straightforwardly provable but ancillary to
information flow security, or beyond the scope of the project.

Properties which fell beyond the scope of the project did so because there was no
theory which could be used to reduce their proof to manageable complexity, and to ensure
that all supporting assumptions were proven. The formal model states these properties
for the system as a whole. They could be decoupled into properties for individual hosts;
and these into properties of individual processes, etc. As an example, the restrictiveness
of the entire system is decomposed into the restrictiveness of each component, using
established theory. In principle, the configuration and discretionary policies could be
decomposed likewise. However, in practice, this decomposition involves too much detail
to be done quickly and with a reasonable assurance of correctness.

4.3.1 Overview

The proofs are organized as follows:

1. We will prove the File Manager is restrictive, using the methodology of 4.2.3.1

232 CHAPTER 4. FORMAL METHODS

2. We will prove the Catalog Manager is restrictive, arguing that the methodology of
4.2.3.1 is sufficient.

3. We will discuss the hypotheses for the processes involved in authentication.

4. We will prove the Authentication Manager is restrictive.

5. We will prove the TIP is input limited restrictive and will show what output
property we can export to users.

6. We will briefly mention how to implement the filter.

7. We will discuss the choice of protocols used in authentication.

8. We will show that the user and the TIP can be composed.

9. From the above and assumptions about restrictiveness of the rest of the system
we can conclude that the system is input-limited restrictive.

10. Then we show correct authorization. Improper logins are not accidently considered
okay. While this is not a mandatory access control, it is vital for a secure system.

11. We draw conclusions about the security of the system.

4.3.2 Verifying the File Manager design

It has been proved that the file-manager top-level design meets the composable security
property of Restrictiveness. The proof was done in Gypsy using techniques discussed in
the section 4.2.3.1.

4.3.2.1 A Brief Recap of the design

All open-to-read requests will be honored if the level of the request dominates the level
of the object. The actual file would be copied onto a ghost file at the level of the request
to open-to-read. e.g. if a top-secret client wishes to open a secret file to read, the file-
manager would create a ghost file at top-secret which would be a copy of the secret file.
Subsequent read requests by the top-secret client would be mapped onto this top-secret
ghost file.

All write requests have to arrive at or above the level of the object. But open-to-
write requests would be honored if and only if level of the request equals level of the
object. Also, the writes take place onto the actual object, no ghosts are involved. If more
than one client issues a valid open-to-write request, the request that is first received is
honored. The other request is turned down for reasons that the file is in use.

All "up" operations, like writeup, are allowed if the client sets the "up" bit in the
original invocation. Also the reply for these "up" operations from the object-manager

4.3. VERIFICATION OF THE FTLS 233

cannot reach the client. (The client will get a cursory response from the message switch
that his request is being acted on). This is because the kernel would, as part of the
ReadSDBEntry operation, reset the level of the request to the level of the object. There-
fore, managers handling the request would be at the level of the object (or be MLS) and
hence cannot communicate with the client.

4.3.2.1.1 Intuitive Understanding of the Proof Before delving into the Gypsy
proof that the file-manager specifications meets the security policy, it would be helpful
to gain an understanding of why the design is secure. Our security policy, in effect,
translates into the following: For lower level access requests, the system should behave
as if there are no higher level accesses in progress.

As per our design, all valid reads are handled by creating ghost files at the level of
the request. So multiple read requests pose no problem. Writes are made directly onto
the object. All valid write requests have to be at the level of the object. It is not a
violation of the policy for a second valid write request to learn that the object is being
written into. Therefore, we elected to refuse the second write request on the grounds
that the file was being written into. Read and write requests to the same object would
pose no problems because the read would get a ghost file without interfering with the
write request. It is also relevant to note that the file-manager always responds at the
level of the invocation.

An alternate design that is also secure would call for reads to take place with the
actual object and writes to be handled with ghost files. These ghost files would have to
be internal to the file-manager (not be a part of the local ODB). Write ghosts would
also have the additional overhead of having to be written over the actual object once
the write operation is complete and the actual object is free.

4.3.2.1.2 Experiences with the verification The techniques described in section
4.2.3.1, to prove security properties in Gypsy were exercised successfully on the file-
manager design. The design specifications are in Appendix A and the transformed spec-
ifications are in Appendix B. There were no major deviations from the stated program
transformation technique. The loop invariant on the MLS data-structures, however, was
handled differently from the scheme described in section 4.2.3.1. Defining a purge func-
tion (a function to project out values less than or equal to level 1) to operate on MLS
data structures was a non-trivial task. Therefore, instead of defining such a function,
the loop invariants were stated in the form of equivalence of values returned by functions
to which these MLS data structures were parameters. For example, if openfor is an MLS
data structure and has-access is a function that has openfor as an input parameter, then
the assert statement would read:

V call:sendmessage
(has.access(call, openfor) if and only if has-access(call, openfor.sh));

The procedures called in the file manager were of the form where exit specifications

234 CHAPTER 4. FORMAL METHODS

could be stated in terms of the input parameters and therefore posed no problems in the
proof (see section 4.2.3.2 for details about handling subprocedures in the overall proof
scheme).

As the file manager represents the only component completely verified using the
program transformation technique, we will close with a few comments about Gypsy
and the use of our techniques to verify the security policy. The time required for VC
generation was quite large, and far out of proportion to the conceptual difficulty of
the security properties being proved. This results from most variables in the program
undergoing parallel updates in both the actual and the shadow histories, and the need to
prove that parallel updates leave the relation between the actual and shadow variables
intact. The theorem prover needed human intervention for many trivial steps in these
proofs. Also, we found a number of bugs in the Gypsy environment during the course
of this effort, and although the support and maintenance of Gypsy was quite helpful,
the presence of these problems was a frequent irritation, and we often found ourselves
contriving ad hoc ways to work around them.

The technique described in section 4.2.3.1 was somewhat tedious to follow. Generat-
ing shadow variables and carrying out the program transformation is less than desirable.
But this labor intensive task could be automated, thereby weeding out the drudgery from
a conceptually simple technique. We have not attempted the automation as that effort
was not called for as part of this project. However, success in verifying the file manager
design establishes the feasibility of our technique.

4.3.3 Verifying the Catalog Manager Specification

The catalog manager defines the SDOS operations that can be invoked on directories.
The Gypsy specification for the catalog manager can be found in Appendix A, and an
informal description of that specification in Section 4.1.4. It the only example we have
specified of a replicated MLS object manager, and is noteworthy in that regard since the
concurrency control algorithm used does not interfere with multi-level security.

We have not carried out the Gypsy proof of the catalog manager using the program
transformation technique, but we expect that it can be done straightforwardly using the
methods of section 4.2.3. We assume in what follows that these methods are familiar. At
the top level of the program, in main procedure "catalog.manager", the variables "pend-
ing-ops" and "used" contain the only part of the manager's state that is stored between
one pass of the loop and the next. Each of these is a structure containing components
at many levels: "pending-ops" contains records of each transaction in progress, with the
level of each record being the level of the message that began the transaction; "used"
contains transaction numbers, with the level of each number in use being the same as
the message that created the transaction it names. To use the program transformation
technique, it will be necessary to prove as invariant the fact that the purged parts of
each of these structures, i.e., the components with levels less than some fixed 1, are equal
in the two histories.

4.3. VERIFICATION OF THE FTLS 235

The main procedure calls on a chain of subprocedures to determine what outputs
are appropriate in response to an input. These subprocedures are: "handler", "re-
ply-handler", "read.-ODB-handler", and "lookup-handler". Each one handles a more
specific, possible, situation. Collectively they determine the values of "out", "multi-
cast", and "sndmesg", which in turn determine exactly the outputs that will be sent
during the handling of the current input message. By using the subprocedure decom-
position technique of section 4.2.3.2, it will be possible to show that the existence of
higher-level transactions in "pending-ops" will not affect the values of "out", "multi-
cast", and "sndmesg".

An important part of this proof concerns concurrency control. Normally, an input
will be processed by relating it to some transaction, making sure the input is at the same
level as the transaction, and basing the output solely on the state of the transaction.
However, if the object of the original invocation is locked because more than one update
operation has been started for it, then the output of the catalog manager could depend
on the entire set of pending transactions. In general, this set will have transactions at
many levels, and the resulting outputs could compromise higher-level information. Two
facts prevent this:

" The catalog manager need not service any "write-up" operations, since the scheme
chosen for the SDB (see section 4.1.2.2) will have already upgraded previously in
the message switch any "write-up" operation to the level of its object.

" Any catalog manager operation requiring concurrency control is an operation that
must perform a "ModifyODB" operation on its object. This secondary operation
will fail unless the object's level dominates the level of invocation. Given the first
constraint above, the catalog manager is justified in aborting any such operation
unless the level of the object is exactly the level of the invocation.

Therefore, a lock on an object which has more than one pending "update" operation is
guaranteed to exist as a result of transactions at the object's level and no other. Even
in the presence of this kind of concurrency control, the output at one level need not
depend on whether higher-level transactions exist.

We have argued that the catalog manager's response to the current input message can
be proved secure, if considered in isolation. Once the current message is handled, though,
the "pending-ops" list is searched for other transactions that may become unblocked once
the lock on the object of the input message is removed. From the facts about concurrency
control presented in the last paragraph, we can conclude that the set of transactions
potentially unblocked at this point is the same in both the actual history and the purged
history (they are all the level of the input message). The function "find-waiting" chooses
which potential transaction is to become unblocked. If this function is deterministic,
and it makes its choice based only on the pending transactions at this and lower levels,
then it will choose the same transaction in both the actual and purged histories. This
transaction then becomes the new input to "handler", and the proof of security proceeds
exactly as for the input message at the top of the main loop.

236 CHAPTER 4. FORMAL METHODS

The function "find-waiting" can either be assumed to have the required property,
or it can be more completely defined (either with an exit specification or a procedural
body) and the program transformation technique can be applied to it as in section
4.2.3.2. Once its non-interference property has been established, the security of the
entire catalog manager is proved.

4.3.4 Verifying the Kernel specification

The kernel was the most complex of the SDOS components that were designed to be
secure. As can be seen from the kernel specifications in Appendix A, each of the kernel
components was isolated as a procedure. Communication between components was mod-
eled by subprocedure calls, as described in section 4.1. The kernel design did severely test
our security policy and also the methodology chosen for verification. We are convinced
that the design is "secure", in the sense that the aspects of the design that cause failure
of restriction are few in number, are known, are desirable features, and are difficult or
impossible to exploit. Some generalization of the policy of restrictiveness would be de-
sirable for verifying that these aspects are indeed benign. The program transformation
methodology did not prove to be adequate either. The scheme for proving subproce-
dures in Gypsy (section 4.2.3.2) could not be applied. It was said earlier in section 4.1
that instances of WNI processes may not be provable by the program transformation
technique. We did encounter that problem in attempting proof of the kernel.

In the light of the above difficulties, we were unable to conduct the formal verification
of the kernel specifications. The sections that follow will elaborate on the problems and
provide an intuitive understanding of why the kernel design is secure.

4.3.4.1 Intuitive understanding of kernel security

The key points to note about the design of the kernel components:

" The SDB does not release information about entities at levels higher than the
request. Write ups and other "up" operations will get their responses back at
the level of the object, which cannot reach the client. If the object did not exist,
the reply would be at the level of the object, but this cannot be relayed to the
client because it would violate our security policy. Therefore no operation at level
1, say, will base its actions on information at a level greater than 1 and respond
at 1. In other words, responses to clients will always be at the join of the level
of the information that is used to act on the request and the level of the request
itself. The locator cache and the process table are also protected by their managers
behaving under the same rationale as the SDB.

" Since clients and managers are untrusted entities, in general, care must be taken to

avoid security breaches through covert channels. The message switch always checks
the validity of the level of the client's request with the SDB before proceeding with

4.3. VERIFICATION OF THE FTLS 237

the invocation. In case of the client misstating his level, the level of the request
is rectified. Also to prevent managers from relaying information back to clients,
single level managers who handle client requests would always be at the join level
of the level of invoke and the level of the object. This way, the manager cannot
communicate any information that is invisible to the client himself. For "up"
operations, this is ensured by the ReadSDBEntry returning information at the
level of the object.

The only entity within the kernel that can cause a change in level of reply (from
that of the invoke) is the SDB. The SDB behaves securely, as described earlier.
Since the invocation comes from the message switch, the level of the invocation
can be trusted. All components use the SDB to determine the level of the objects
that they are dealing with. The level of the SDB's reply will be the level of further
actions by these components. Hence, as discussed in the previous paragraph, the
actions are secure.

" ModifySDBEntry can be successfully invoked only by the System Manager and the
Authentication Manager. Since these are both trusted entities, the unintentional
downgrading will not occur.

4.3.4.2 Reasons for not conducting formal verification

The reasons for our inability to conduct formal verification on the kernel design stemmed
from weaknesses in our policy and from the choice of the methodology for verification.
This section is devoted to discussing the details.

The policy does not handle the situation in which the levels of some events are
unclear. Specifically relating to the kernel, client processes are not necessarily
trusted to stamp their levels correctly. Therefore, the level of the message reaching
the message switch is unclear. The level can be determined only after the message
switch interacts with the SDB. See section 4.2.4 for advances towards generalizing
the theory to formalize the determination of such levels. The problem with the
policy as it stands now can be highlighted by an example. If clients mislabelled
their messages to the message switch, then a reasonable message switch design
would call for resetti ?- the label to the correct level before proceeding with the
invocation. For instance, suppose that unclassified client A sends his invocation
labeled as secret. The message switch would reset the level of the invocation to
unclassified and proceed with the invocation. This, obviously, will violate our
security policy. It must be noted that there is no security breach. The legitimate
action shows up as a violation because the client's invocation was mislabelled.

One could attempt to circumvent this problem by forcing the message switch to
disregard all messages that have been mislabelled, i.e., to take no action on behalf
of the request. We would then need to prove that the message switch satisfies this
mechanism in addition to restriction. But this would be introducing some denial
of service that is really unnecessary.

238 CHAPTER 4. FORMAL METHODS

The security policy does not permit downgrading.

Downgrading is the phenomenon wherein an entity's level is reset to a lower level.
This action might be needed to reduce the overhead of maintaining secret infor-
mation. It is possible that some information, weather data, perhaps, that is a few
hours or days old need no longer be secret. The ModifySDBEntry invocation ser-
viced by the SDB would be a vehicle to achieve downgrading. But such an action
would violate the policy.

9 CreateSDB operation introduces non-determinism.

The CreateSDBEntry operation returns randomly generated UIDs, thus making
the SDB non-deterministic. This makes theorem 2 inapplicable, and prevents the
use of the program transformation technique of section 4.2.3.1. Thus, even though
the SDB process is WNI and restrictive (if ModifySDBEntry is excluded), our
methods are inadequate for demonstrating this in Gypsy.

e The scheme for handling Gypsy subprocedures (section 4.2.3.2) calls for these
procedures to be SNI. The procedures that describe the kernel components are
not SNI. Therefore, our only available scheme for proving the kernel secure is to
use inline expansion (with some optimization). But, this would cause an explosion
in the number of VC generation paths and an already time-consuming task would
become infeasible.

4.3.5 Proof of processes involved in Authentication

There are a relatively large number of assumptions and assertions in this section. This is
due to two reasons. First, the capabilities of Gypsy are somewhat limited and so much
of the mandatory proof must be done external to the specifications. Secondly, much of
what we need to show are not mandatory properties.

4.3.5.1 TIP specifications

I. State Transition of TIP

The following is a complete description of the state transition diagram for the TIP.

The possible states are READY, LOGINGIN, LOGINGOUT,and ACTIVE.

There are also two state variables. One, called LastLogin gets updated when there
is a login and confirmed when receiving the login reply from the system. The other is
Curlevel, which keeps track of the security level of the current user.

Each time a new request comes in from either the user or the system, there is a state
transition (possibly just to itself). The variable fromuser is set to true iff the message
was from the user. Incoming user messages are stored in ucall and incoming system
messages are stored in incall.

4.3. VERIFICATION OF THE FTLS 239

There are 6 boolean functions which indicate the kind of message:
IsLogin ,IsLogout ,IsLoginReply ,IsLogoutReply,Logout Ack and IsLogin~k.

Assume that:

1. IsLogin(ucall) iff ucall is a login request

2. IsLogout(ucall) iff ucall is a logout request

3. IsLoginReply(incall) iff incall is a reply to a login request and in addition it matches
the last login request (i.e. incall.transactionnumber=lastlogin .transactionnumer
and incall. level =lastlogin .level and incall.sender=Authentication Manager)

4. IsLogoutReply(incall) iff incall is a reply to a logout request

5. LogoutAck(ucall) iff ucall is a tip generated reply to a logout request

6. IsLogin~k(incall) iff incall has the reply field set to ok and not inc all.level =ready

The state transitions are:

Initially, stateready and curlevellow

if prevstate-logingout then
if not I romuser and IsLogoutReply(incall) then

state-ready
else

statealogingout
elif prevstate-active then
if I romuser and IsLogout(ucall) then

state-logingout
else

state=active
elif prevstate-ready then
if I romuser and Islogin~ucall) then
state-logingin

else
state-ready

elif prevstate-logingin then
if not I romuser and Isloginreply~incall)

if IsLogin~k(incall) then
state-active

else
state-ready

elif I romuser and Islogout~ucall) then

240 CHAPTER 4. FORMAL METHODS

statezlogingout
else

statezlogingin
end

LastLogin ne prevLastlogin -> (state=logingin and prevstate=ready
and Lastlogin. level=Requestedlevel(ucall))

II. Level specification.

For each state transition, let curlevel be the current security level and let prevcurlevel
be the previous current security level. Then:

curlevel=prevcurlevel or

state=active and prevstate=logingin and curlevel=level of the
last incoming call from the system(which is the loginreply) or

state=ready and prevstate=logingout and curlevelareadylevel
(using the fact that state=ready implies curlevelareadylevel)

So there are two times when a level gets changed. After a logout the curlevel becomes
the readylevel. After a correct login the curlevel becomes the level of the loginreply
message (which is the level at which the TIP was set).

III. TIP output spec

The variables senttouser and senttosys are set to true iff there was a message sent to
the user or system (respectively) during the last state transition. Let prevstate be the
state at the time the message was sent.

sentouser iff ((there was a message incall from the system and
(prevstatemactive and incall.levelucurlevel)

or (prevstate=logingout and Islogoutreply(incall))
or (prevstate=logingin and Isloginreply(incall)))

sentosys iff
(there was a message ucall from the user and

(prevstate=active)
or (prevstate-logingin and Islogout(ucall))
or (prevstate-ready and (Islogout(ucall) or Islogin(ucall))))
or (prevstate-logingout and IsLogout(ucall))

a'id state=logingout and IsLoginreply(incall))

The output to the user is solely a function of the state (including lastlogin and

4.3. VERIFICATION OF THE FTLS 241

curlevel), and the incoming message from the system. The following description is based
on the above mentioned cases.

1. It is the transformation solely of incall.

2. It is the transformed logoutreply message.

3. It is the transformed loginreply message.

The output to the system is solely a function of the state, and the incoming message
from the system.

1. If the state is active then first the message is transformed from just ucall, and then
label field is set.

2. It is a logout request (from active, logingout or logingin).

3. It is an AuthenticateAs operation being sent to the authentication manager with
the message field solely a function of the users call.

4. It is a delayed logout request (which was waiting for the loginack from the system)

IV. LastLogin specifications.

Each login request coming from the user in the ready state will generate a unique
transaction number for the outgoing call. (To ensure the probability of a mismatched
login reply is essentially zero.)

V. Output assertion to User:

Any messages sent to a user after an Ok login acknowledgement but before the next
logout acknowledgement will be at or below the level of the login acknowledgement (and
hence at or below the level of the corresponding login).

4.3.5.2 Authentication Specifications

I. The content of messages.

For login and logout there are two kinds of messages sent, messages to the kernel
and replies to the TIP.

Messages sent to the TIP have only 1 added bit of information sent back in reply
(error=true or error=false) and the original message field is blank.

There are two kinds of messages sent to the kernel, set or reset process bindings.

II. In checking for correct login it is asserted that:

242 CHAPTER 4. FORMAL METHODS

1. The request has been checked to make sure it is from an appropriate TIP.

2. The login data is correctly checked to see if it is legal.

If either check fails then the CI information will not be changed and the reply will be
(error'.

11. Every input to the manager will cause exactly one output, which is at the same level
as the request. Also, level I messages only change and read level I information from the
data structures.

IV. Only the owner of a password (and possibly the system manager) can change the
password entry. (It is probably impractical to encode all the users as different levels and
so this integrity condition is checked directly rather than just using security labels.)

V. Timing of Password Invalid Response.

Login error responses will happen at a rate no faster than some constant. This will
require an auxilliary proof whose validity depends on details of the hardware.

4.3.5.3 Message Switch Assumptions

I. Preservation of fields (The sender field is set correctly)

II. Correctness of originator (including the level field and the sender field)

4.3.5.4 External Assumptions

I. Correctness of Filter

It is assumed that the filter will be implemented correctly. Information from a session
is only visible to a user who acquired access to that session. Information passed to the
system is only achieved by the user who acquired access to that session. A release line
request will cause a logout.

II. Password Assignment

Passwords for users above minimal security will be sufficiently complicated. The
probability of guessing a correct password should be near zero. (See, for example, the
DoD Password Management guidelines [DoD Password 85].)

Ill. User to TIP assertion: After a login and before a logout, all user messages will be
at the level of the login. Precisely,

for all input sequences s from the user to the TIP
(for all n (ISLOGIN(s(n))) -- (for all m > n and m : length(s) not ISLOGOUT(m))
- for all m > n and m _< length(s) restrictive level(m) _< restrictive level(s(n))))

4.3. VERIFICATION OF THE FTLS 243

This condition is really too stringent. A user really does not need to logout after an
illegal login. However, the actual condition needs to be stated in terms of both inputs
and outputs. It is,

for any trace of inputs and outputs from a user,
(ISLOGIN (s(n)) - (for all m > n m _< length(s) not ISLOGOUT(m) and not ISLOGIN-
REPLY(m).failed) -- for all m > n and m < length(s) restrictive level(m) restrictive
level(s(n))))

Directly proving restriction from this sort of limitation is harder then just showing
input-limited restriction. So the proof will proceed in several steps. First we will assume
the user abides by the first, stronger condition in order to show input-limited restriction
of the TIP; then we will use the hookup theorem; and finally we will show that the
modified version does not effect either restriction or security of the entire system.

IV. The Filter and the line release acknowledgement

The user should not time the releases of the terminal line so as to convey high level
information. The system does not provide much help in aiding the user as to how to
make this decision. On the other hand, failing to abide by this requirement would at
worst be a very slow channel.

4.3.5.5 Authentication Manager Proof

The proof of restriction for the Authentication Manager is as detailed below:

Each input at level I causes an output at level I. The output is purely a function of
the input, with level I information stored in the password table and pending operations
list, and in constants of the specification.

It is likely that this proof could have been done using the program transformation
technique of section 4.2.3.1. Instead, we present here a proof by cases.

Suppose the input is at level I.

Cases:

An AuthenticateAs input will use the message and the password table to construct
the output. In fact only a level 1 entry of the password table is checked. Since these
entries can only be changed by level I requests, the result only depends on the level 1
history. The actual message sent is only a function of that input and level I information
from the data structure. The addition of this request to the waiting list for receiving a
reply from the kernel does not change any other message on the list. (Hence no lower
level requests will detect the difference)

A Logout request is low and will cause a message to be sent at that low level.

A ChangePassword request is made at level I and causes an output at level I. And
it only makes changes to the password table at level 1. (In fact the only field that may

244 CHAPTER 4. FORMAL METHODS

be changed is the one belonging to that user)

A reply from the kernel at level I will be matched with a previous I message if any,
and then sent out. Only a level I message can be removed from the data structure.

All other requests will be just be answered with a failed reply message at their level,
(with the same label 1, and same restrictive level).

So, in any case it is always possible to add or delete higher level inputs in a history
so as to satisfy the restriction property.

4.3.5.6 Proof of restriction for the TIP (including the Filter).

In the following, the term "restriction" will always refer to input-limited restriction and
the term "userlow" will mean the lowest level possible for any user.

Recall that there are two kinds of user messages, those to obtain and release access

to the terminal, and requests to the system. The TIP will also receive system messages.

The proof of restriction will be conditioned upon assumptions on the inputs.

Note that in our model, if there is a consecutive group of inputs (no intervening
outputs or internal events) it is possible that the next output will happen after all of
them. (If they happen close enough together then they will be buffered.) Hence we may
assume that in adjusting any a^8'^ -y', that all of the changes appear in -y'.

Proof:

Let A)3A-y be any TIP history (where 0 is just inputs). Assume the. user input
history satisfies the assumption. Let 'A-' be a set of modifications to 0^-1 produced
by adding or deleting some messages with levels not less than I. Let m be any such
message. Assume that the user input history from ai^" '1 satisfies the input limitation
assumption. We look at the first change and then proceed by induction to the others.
At each step we will make appropriate modifications to -"'.

We will assume that I > userlow (since there is no message that a user can send to
the TIP below this, and any message from the system to the user at this level can be
forwarded).

Case 1: Requests to obtain the terminal will, at least in part, be visible to other
users. Namely, being denied service means someone else got the terminal. So all such
requests will be treated as userlow, and hence m cannot be such a request.

Case 2: Release the terminal. As above, this is a userlow request.

Case 3: m is a message from a user who does not have access. Such a message is
rejected by the filter (without reply), and so let -"' be -y'. (This case is artificial in the
sense that any reasonable user will not attempt to send a message until he actually has
access to the terminal. It is covered here for formal completeness.)

4.3. VERIFICATION OF THE FTLS 245

Case 4: m is a message from a user who does have access.

No matter what the state of the TIP, it will either discard the message or forward
a message to the system at the same level (see TIP specifications). If needed, add or
delete this as an output. If this message causes a state change in the TIP, it may be
necessary by induction to change later outputs. All user messages to the system during
this login session are at this level (except for logouts which are considered userlow) and
all system messages except logout acknowledged are at this level.

Subcase 1: m appears after a valid login and before a logout. (So by the assumption
on inputs it is the level of that login)

Subsubcase a: m appears while the TIP is in the active state. Then by induction m
will be transformed into an output to the system arid stamped with level 1.

Subsubcase b: m appears while the TIP is in login or logout state, then make no
modifications. (The message gets thrown away.)

Subsubcase c: m appears while the TIP is in the ready state. (This is not a possible
case; see state transition description in section 4.3.5.1.)

Subcase 2: m does not appear after a valid login and before the logout.

Subsubcase a: If it is a login and the TIP is in the ready state forward the request
at the requested level. (logins are always at the requested level, so restriction is not
violated)

Subsubcase b: It is not a login. By induction, we know the TIP is not in the active
state. In all the remaining possibilities for which m has level I, (i.e. is not a low logout),
the message just gets thrown away, so no adjustments need to be made.

(Outputs are solely a function of the message and which of the four states the tip is
in, and of the two state variables, lastlogin and curlevel.)

System cases:

Case 5: Logout acknowledged will be at userlow.

Case 6: Login acknowledged is at the level of the login by specification. In this
instance, add or delete an output to the user informing him of failure.

Cast 7: Messages above the level of the user get rejected. No outputs need be
changed.

Case 8: Messages at (or below) the level of the user which are not loginacks or
logoutacks, will get tossed if the TIP is not in the active state. If the TIP is in the active
state then adjust the outputs by adding or deleting the message to the user.

As mentioned above we may need to fix outputs inductively.

So in all cases we may construct a -"' so that a^/T^'yI is a history with the only
differences between -y' and -y" being the high level outputs.

246 CHAPTER 4. FORMAL METHODS

User Outputs

We assume that the output behavior of the user meets the input limitations stated
above.

4.3.5.7 Implementation Considerations

4.3.5.7.1 Implementing the filter

Recall that a filter is a formal construct which represents how different users share
the terminal. In some cases, it may be possible for the user can handle the role of the
filter. Whether there needs to be external security or whether a user can be trusted
to do this depends on the environment. It may or may not be easy to block access to
the terminal. We can often assume that the user is trusted to release the line before
physically leaving a room in which the terminal resides.

It is surely the case that we must assume that a user with multiple accounts at
different levels will behave securely (i.e. will not do any writedowns).

4.3.5.7.2 Constructing a Protocol

There are a number of possible protocols that can be used by the processes involved
in authentication: the TIP, Authentication Manager and the Kernel. We have chosen a
simple protocol which does not explicitly check that the order of the login is maintained
when the kernel executes the set and reset process bindings operations. If the authen-
tication manager and the TIP are on the same machine then the current specifications
should be sufficient. A more complicated protocol may be needed if these messages must
pass between machines. Proofs for this latter type of protocol are harder because the
the limitations between the process connections are no longer just input-limitations. A
generalization of input-limitation to trace-limitation is possible, but the theory has not
been fully worked out. There is also a future possibility of using the theory of generalized
restriction (section 4.2.4.3) to provide a satisfactory foundation for this type of protocol.

4.3.5.8 Composability of the User and the TIP

The input assumption in the proof of input limited restriction of the TIP is assumed
to hold for each user. In return, the TIP will screen messages that the user should not
see. This will be a sufficient limitation on inputs to the user (outputs from the TIP), so
that the user can act as though he were a restrictive entity. Hence we could apply the
input-limited hookup theorem between any set of users and their corresponding TIPs.

4.3. VERIFICATION OF THE FTLS 247

4.3.6 Concluding Remarks

So far we have shown:

The Authentication Manager plus the 'base system' of Kernel and MLS managers
is restrictive. We also have shown that the combination of the TIP and the filter is
input-limited restrictive, so we can apply the input-limited hookup theorem to include
this component as well. Therefore, the entire system is input-limited restrictive.

4.3.6.1 Limitations on users

As mentioned previously, it is not just restrictiveness which makes this system secure.
It is the fact that the only high level rights, other than login confirmation, that a user
has are those obtained by a login at that level or higher. Other than logout acknowl-
edgements and login acknowledgements the only other messages that get sent to the
user are when the TIP is in the active state. This can only happen if the login request
comes back with a matching login okay from the authentication manager. And the login
okay can only happen if there was correct password verification in response to this login
request.

If the message switch does not preserve the order of messages between the TIP and
the Authentication Manager or between the Authentication Manager and the kernel,
then a logout issued while loging in may not effectively clear the CI rights of the TIP. If
this will be a problem, it is possible to buffer a logout request until the login acknowl-
edgement has returned from the system.

A NewPassword command must also be designed correctly, so that password entries
are not incorrectly changed.

Of course, one of the biggest problems is not the correct security of the system,
but rather the correct security of the users. Authentication will serve little function if
passwords are not properly protected outside of the system.

4.3.6.1.1 User assertion

We now see what happens if we weaken the constraint on the user. Suppose we
impose no constraint between an illegal reply message and the next login or logout from
the user. After an illegal reply rressage from the TIP (uniquely determinable by the
absence of an intervening legal login reply message) the TIP will be in the ready state.
Any message which is not a login or a logout will be discarded. Deleting or adding these
messages causes no other change in the history because they are ignored by the TIP.

Here is an informal argument that this does not affect security. Let us choose any
history h of the system (under the new weaker restraint on the user). Now add or
delete high level inputs to h as in the input-limited restriction theorem, calling the new

248 CHAPTER 4. FORMAL METHODS

sequence hD. Now delete from h' any user inputs after an illegal login acknowledgement
and before the next login or logout. Call this sequence h". Let g be a modification
to the original history with the extra inputs removed (so as to conform to the tighter
restriction on users). Now adjust h" to form h"' by deleting any low level input after a
logout and before a login which was also deleted in g. (An event which used to follow
an illegal login may, in h", follow a logout and so may need to be deleted to agree with
g.) Now g and h"' agree except possibly on high level inputs. They also satisfy the
tighter restrictions on the user. So by the input-limited restriction theorem adjust h..
to form h". Now modify h." to form h."' by inserting the superfluous inputs back into
h"". This final history will be what we must produce to show that we have met the
conditions for the input-limited restriction theorem with the weaker input restriction.

4.3.6.2 Conclusion

This system is input-limited restrictive. However, there are two small trouble spots. One
is that a user may inadvertently do writedowns when they acquire and release access
to the terminal. As pointed out, this is at worst a very slow channel. Secondly, we
have granted unknown users the right to receive illegal login replies. This happens at a
sufficiently slow rate, and the passwords are chosen to be sufficiently random so that it
is highly unlikely that this will cause a more serious problem.

Hence, the system is essentially secure.

Chapter 5

Final Report

5.1 Project Goals and Accomplishments

The objective of this project has been to investigate multilevel security issues as they re-
late to distributed operating system design. The required deliverables include a security
policy, formal model, and formal top level specification for an Al class secure distributed
operating system, and documentation of the issues and possible solutions that have been
discovered in the course of this project. In support of these objectives, we devoted some
effort to producing a high-level design for a secure distributed operating system (SDOS).

Working entirely in the abstract is difficult and often unproductive. Therefore we
chose to investigate multilevel security issues in the context of an existing, operational
distributed operating system. The existing system that we chose is Cronus. Cronus is an
object-oriented distributed operating system, that can operate across a heterogeneous
set of networks and host operating systems. It has a set of features that provide good
support for the writing of distributed applications, and it has an internal architecture
that allows those features to be implemented reliably and efficiently. By basing our
SDOS design on Cronus, and preserving as much as possible of its feature set and
internal architecture, we felt assured that the resulting design would be usable and
implementable as well as secure.

A distributed operating system is built on top of a set of single hosts, which are
connected by a network. There has been a great deal of research in the areas of single
host security and network security. It is our conclusion that, while distributed system
security is related to these other two areas, and in fact depends on them for its success, it
is a distinct area with a set of problems unique to it. Exploring the distinctions between
the three areas has helped increase our understanding of distributed system security.

Our research has uncovered a number of problems unique to distributed system
security, and identified some possible solutions to them. They are mentioned briefly
here, without any supporting arguments, in order to define the scope of the discussion.
They are treated in more detail in the subsections that follow.

249

250 CHAPTER 5. FINAL REPORT

A distributed system security policy must be defined in terms of message passing
between active entities, rather than the traditional (Bell and LaPadula) read and write
operations of an active entity (process) on a passive entity (file). The concept of a
distributed TCB, running in the higher layers (above the communications and host
operating system layers), must be supported by the security services provided by the
communications and host operating system layers; that is, the distributed TCB must
be implementable within the security restrictions imposed by those lower layers. The
distributed nature of the TCB, particularly the fact that parts of the TCB can drop out
of and later rejoin the system, as hosts go down and come up, presents some security
problems, especially in the area of object replication. The access class range (system
low to system high) can, in general, be different for each host and each inter-host path;
further, within each host it becomes useful to talk separately about the access class
ranges for active entities (processes), passive entities (files), and messages sent to, and
received by, the host. This has implications for the multilevel security policy. There are
a number of covert channels that are brought into existence by the distributed operating
system's attempts to make its distributed nature transparent to application programs
and users, and its attempts to operate efficiently, minimizing delays due to inter-host
communication. The desirable objective of having the SDOS operate across a hetero-
geneous set of networks and host operating systems presents some security problems,
especially when the various networks and hosts vary in the degree of assurance of their
security features.

In the area of formal specification and verification several significant results were
achieved. Our basic goal was to write the Formal Top-Level Specification of the design
of SDOS, and to prove formally that it satisfied multi-level security. To a large extent,
this goal was met.

We based our definition of multi-level security on an emerging theory of information
flow security being developed at ORA [Ulysses 87]. This theory defines information flow
in terms of the deductions that can be made about unseen (higher security level) events
in a system's history. A basic result of that theory is the discovery of a composable
security property: two subsystems having the property can be hooked together to form
a larger system also having the property.

Our work in this project has extended the theory of information flow security in two
ways:

1. We have proved theorems that enable one to break the primary security property
into simpler sub-properties;

2. We have developed a technique for demonstrating the simpler sub-properties using
the Gypsy Verification Environment.

5.1. PROJECT GOALS AND ACCOMPLISHMENTS 251

5.1.1 Distinction Between Network and DOS Security

In our view, a distributed system is different from a network, and thus distriblited
system security is different from network security. The difference is that a distributed
system is built on top of a network. It is implemented in and above the higher layers
of the OSI model. A distributed operating system provides support for the writing of
distributed applications. It attempts to identify those functions that are common to
most distributed applications, and implements them in the operating system, relieving
application programmers of the task of implementing them in each application. Some of
the services provided by Cronus (the DOS on which this project was focused) would be
identified with the three highest layers of OSI (session, presentation, and application);
others would be located in still higher layers. The DOS attempts to hide the distributed
nature of the environment from application programs. For example, it provides the
same interface for accessing local and remote data objects. A security policy for an
SDOS must be stated in terms of the subjects, objects, and operations implemented by
the higher layers in which the SDOS exists, and not in terms of the entities of lower
layers.

It is useful to put this discussion into the context of the terminology and concepts
in the TNI [NCSC TNI 87]. Section 1.3.2 of the TNI describes two network views: the
interconnected accredited AIS view and the single trusted system view. An SDOS is
more closely related to the latter than to the former. However the collection of underlying
hosts and networks upon which the SDOS is built may appear to conform more closely
to the interconnected accredited AIS view. The nature of this hybrid view will be made
clearer in the sections that follow.

The discussions of connection-oriented abstraction and subjects and objects in section
1.3.2.2 are related to entities of layers lower than SDOS. (In the SDOS design, connections
are owned by TCB partitions and are used for communication with their peers on other
hosts.) Section 1.4.3 mentions four types of security policies that may be supported
by a network component: mandatory, discretionary, supportive, and application. It
gives, as an example of an application security policy, a policy supported by a DBMS
that is distinct from that supported by the underlying system. It goes on to say that
application level policies will not be considered further in the TNI. We consider the
relationship between the SDOS security policy and that of the underlying network to be
similar to the relationship between the DBMS security policy and that of the underlying
system: from the point of view of the network, the SDOS security policy is an application
policy that is distinct from that supported by the underlying network.

Further, in some cases the SDOS security policy is in conflict with that of the under-
lying network (as outlined in the TNI), and therefore the SDOS layers must be privileged
(i.e., they must be part of the TCB), so that they can enforce the SDOS security policy
and not be hampered by the network security policy. One example of such a conflict is
the set of restrictions in B.4.1 of the TNI, two of which are that a subject is confined
to a single network component and that it may directly access only objects within its
own component. The SDOS deliberately tries to mask all distinctions between compo-

252 CHAPTER 5. FINAL REPORT

nents (hosts). At the level of abstraction of the SDOS, a subject is logged in to, and
authenticated for, the entire SDOS, and may access all objects in the SDOS, subject
only to the restrictions of the SDOS security policy. This policy is one which prevents
information flow from high secrecy to low secrecy entities and from low integrity to high
integrity entities, where entities are the subjects and objects implemented by the SDOS.
This discussion is continued in the section entitled Distributed TCB, below.

5.1.2 Contrasts Between Single-host and DOS Security

There are many differences between single-host and DOS security. This section will
discuss only two of them. The two were chosen because the most effective way of
explaining these two aspects of DOS security is contrasting them with their single-host
counterparts. The two are the way in which TCB boundaries are defined and the way
in which object references are implemented.

5.1.2.1 TCB Boundaries

In a traditi',nal single-host secure operating system, the TCB begins at the top of
some layer, and extends down through all intervening layers to (or into) the under-
lying firmware and hardware. Thus we think of the traditional TCB as having only an
upper boundary. In contrast, the partitions of a distributed TCB each have both an
upper and a lower boundary. In the general case, the partitions must exchange messages
via some untrusted communications medium, and they must use some technique (most
likely cryptographic) to protect the secrecy and integrity of the data that they transmit
over the untrusted medium. Thus, by default, the lower boundary of each TCB parti-
tion is located at the beginning of the untrusted medium. This default TCB boundary
location could be at a number of different places, depending on implementation details.
For example, it could be at the beginning of an unprotected wire or an antenna. It could
be at the host side of a hardware device driving the wire or antenna. If one or more
of the lower layers of communication software run in a front end processor rather than
in the host, the lower TCB boundary could be at the interface between the host and
the front end (provided that no security-related functions are implemented in the lower
layers).

It seems clear that the lower boundary of the TCB should not be allowed to be located
by default, but rather that the best possible location should be chosen for it, taking into
account a number of factors. These factors include the objective of minimizing TCB size,
thereby maximizing assurance and minimizing implementation and verification cost; and
choosing the architecturally best layer in which to locate each security feature. Finally,
if the TCB boundary location is chosen such that some lower layers are outside the
TCB but still within the host, some implementation technique (dependent on the host
operating system) must be used that will protect the TCB from these lower layers even
though the TCB calls them.

5.1. PROJECT GOALS AND ACCOMPLISHMENTS 253

5.1.2.2 Object References

In a single-host system, object references (for example, file reads and writes) are typically
handled by the TCB because the I/O system and file system are in the TCB. (Even if
the full I/O and file systems are not in the TCB, some primitive object-management
system, on which fully-functional I/O and file systems can be built, is in the TCB.)
In a distributed system, on the other hand, object references are typically handled by
untrusted processes on the hosts involved, which exchange messages with each other via
the TCB. (In Cronus and SDOS, the process that issues the request on behalf of a user
is called a client process, while the process that responds to the request, on the remote
host where the object is located, is called a manager process.) The requirement for
a two-way exchange of messages between the untrusted processes can sometimes cause
security problems, because of mismatches between the access classes of the two processes
and the object being referenced.

Consider, for example, the case of a high-secrecy process attempting to read a low-
secrecy object. This is, on the face of it, a legal operation. In the single-host case,
the read is implemented entirely within the TCB. In the distributed case, the read
could involve the sending of a message from a client process on one host to a manager
process on another host. Consider the constraints on the access class of the manager
process. If it is of lower secrecy than the client, then the sending of the read request is
in violation of the SDOS security policy (which forbids the flow of information from a
high secrecy entity to a low secrecy entity). If the manager process is of higher secrecy
than the client process, then the response to the read request would be in violation of
the security policy. C .-arly if there is to be a two-way exchange of messages between
the single-level manager and client processes, they must have identical secrecy classes.
But now consider the relationship between the secrecy classes of the manager process
and the object(s) that it manages. If the manager has a higher secrecy class then the
object, then it may read but not write the object. On the other hand if the manager has
a lower secrecy class then the object, it may write but not read the object. Clearly if the
manager is to be able to both read and write the object, the manager and object must
have identical secrecy classes. (The analogous argument for integrity classes also applies,
but it is omitted here for the sake of readability.) It seems that clients can communicate
only with managers having access classes identical to their own, and that managers can
read and write only those objects having access classes identical to their own. Thus, in
the absence of some solution to this problem, clients can access only those objects that
have access classes identical to their own. This is inconvenient.

This problem arises from the replacement of object references via the TCB, in the
single host case, by object references via unprivileged manager processes, in the dis-
tributed case. We see two possible solutions to this problem: move the manager process
into the TCB, or provide a set of manager processes (potentially multiple instantiations
of the same executable code) at and above the access class of the object. The former
has the drawback that an object manager is inherently an application program, and
it is an objective of the SDOS design (and a feature of Cronus) to allow users (or at

254 CHAPTER 5. FINAL REPORT

least using organizations) to define new object types and implement managers for them.
The latter has the drawback that it leads to an unmanageably-large number of manager
processes: one for each of the possible client access classes. Our design allows a using
organization to choose either of these solutions, according to their own requirements
and resources. We neither require nor forbid the use of multilevel-secure (MLS) object
managers to support multilevel object types. An organization that has the expertise
and resources to implement MLS object managers may do so. The alternative of using
single level managers, one for each client access class, is also available. The problem of
host operating system limits on the number of active processes is addressed by providing
for the dynamic activation of manager processes in response to requests from clients.
The resulting performance problems are addressed by providing a least-recently-used
manager deactivation algorithm similar to traditional page replacement algorithms, and
by using various ad-hoc techniques to speed up the activation of manager processes.

5.1.3 Distributed TCB

We have identified a number of problems unique to distributed system security, and
some possible solutions to them. We have chosen the term "Distributed TCB" (DTCB)
to refer, collectively, to those solutions. The term was chosen deliberately to emphasize
the difference between the DTCB and the Network TCB (NTCB) described in the TNI.
The DTCB runs in higher layers than the NTCB. Conceptually, the DTCB could be
implemented either on top of an NTCB, or on top of a collection of interconnected ac-
credited AIS. (In practice, the implementation of the latter would be the more difficult.)
The distributed operating system implements a number of abstract entities (subjects
and objects); the DTCB enforces a mandatory security policy that controls the flow of
information between those abstract entities.

Given that a partition of the DTCB resides in each host, it is useful to consider the
meaning of the access class range of each host. If a host is assigned system-high and
system-low access class limits, what do they mean? Do they delimit the range within
which that host's DTCB partition is trusted? Or are they intended to place limits on
the range within which unprivileged processes may run, or within which objects may be
created? We will use an example to motivate the answer to this question.

Consider a very high speed computer that is dedicated to making weather predic-
tions and continually updating a database containing world-wide weather information.
Although accurate weather information could be of some value to an opponent, it is
inherently of low secrecy. Further, it must be classified at least as low as the lowest
clearance of any of its legitimate users. So in this example we will assign the weather
information an access class containing a level of confidential, and an empty category set.
The intention is that only the confidential weather information will reside on this host,
but that clients of higher secrecy classes, on other hosts, will be able to request and
receive weather information.

It is not possible to state this policy using a single access class range for each host.

5.1. PROJECT GOALS AND ACCOMPLISHMENTS 255

In fact, we need three ranges for each host, plus one for the system as a whole. System-
high and system-low will refer to the SDOS as a whole, and will limit the range of
information that can exist in the system, and also limit the values that the per-host
ranges may have. On each host, there will be message-high, message-low, process-high,
process-low, object-high, and object-low. Message-high is an upper limit on the messages
that may be sent to the host, while message-low is a lower limit on the labels that may
be put on messages leaving the host. Process-high and process-low limit the range of
unprivileged processes that may run on the host, while object-high and object-low limit
the range of objects that may be created on the host.

In the case of the weather system, both object-high and object-low would be set to
confidential. If the weather database has a MLS manager, then both process-high and
process-low would also be confidential; however if there are single-level managers for
the database, process-high would be set to the highest secrecy level from which client
requests will be accepted. Message-high would be set to system-high of the SDOS, or
to some lower value, if dictated by weak physical security at the weather host, or by
"Yellow Book" [DoD Guidance 85] restrictions.1 Message-low would be set to the lower
of the two values of process-low and object-low. (Message-high and message-low actually
correspond quite closely, in their effect, to the system-high and system-low parameters
of a single-host secure system.)

The effect of having three ranges per host is to allow the placing of separate con-
straints on unprivileged code and the DTCB partition in each host. The DTCB partition
is trusted to process information of higher secrecy than any unprivileged program on
the host. This allows the expression of complex policies, taking into consideration the
different physical security and need-to-know characteristics of each host in a distributed
system.

5.1.4 SDOS Covert Channels

Any system will have covert channels in it as a side effect of its implementation. There
are, however, a number of covert channels that occur in SDOS only as a result of its
distributed nature. These channels, or similar ones, would probably be found in any
distributed system. There are two broad classes of channels that are of interest here.
The first class consists, in general, of the ability of a low secrecy process to detect the
existence or recent use of an object, coupled with the ability of a high secrecy process
to modify those pieces of information. The second class consists of ways in which an
untrusted process could signal to a confederate who is listening to an insecure medium
within the network underlying the SDOS. These covert channels, like most others, can

be fully understood only in the context of a detailed description of the design in which
they occur, and such a description is given elsewhere in this document. The nature of
these channels will be briefly sketched here.

'Note that this prevents very-high-secrecy clients from requesting weather information. This is not
an unreasonable restriction, if the location for which weather in being requested could, if revealed to an
opponent through weak physical security at the weather host, compromise a critical mission.

256 CHAPTER 5. FINAL REPORT

When a client invokes an operation on an object, the system must locate the object
before carrying out the operation. This involves a broadcast to all hosts, requesting a
response from the one on which the object resides. This causes a real time delay for the
requesting client, and possibly a throughput problem for the system as a whole, if done
with unnecessary frequency. To solve this performance problem each host maintains a
cache containing the locations of recently-used objects. This cache introduces two covert
timing channels. (It is suspected that under ideal conditions the existence of the cache
would allow the operation of sequencing channels.)

A high secrecy client can read a low secrecy object, causing its location to be placed
in the cache; then a low secrecy client on the same host can invoke an operation on the
object and detect, by measuring the time delay, whether or not the object's location was
in the cache. This allows a covert communications protocol to be implemented, using a
previously agreed upon group of objects to transmit the l's and O's of a message.

A high secrecy client can create and delete high secrecy objects at will. If the write-
up operation is allowed by the SDOS security policy, a low secrecy client could detect
the existence or nonexistence of a high secrecy object by repeatedly attempting to write
it. An existing object would have its location cached after the first attempt, resulting
in lower time delays for subsequent attempts. A nonexistent object would never have a
cache entry and would always cause a long time delay before the operation completes
(even when success or failure of the operation is not reported to the low secrecy client).

Various solutions suggest themselves: disallow all write-up operations; introduce ran-
dom delays into the completion of selected operations; eliminate the cache completely;
classify cache entries and allow only those processes who are cleared to read them to ben-
efit from their contents. These solutions all have obvious functionality and performance
disadvantages.

The second class of channels involves the ability of untrusted software to signal by
modulating information visible on an untrusted medium. A distributed application,
having a global view of its goals, and possibly some foresight into its future behavior,
could make good use of the ability to influence the behavior of lower layers in ways that
would globally optimize the use of scarce resources such as communications bandwidth.
(Lower layers can, at best, make local optimizations based on past history.) However,
the ability of a higher layer to influence the behavior of a lower layer by passing detailed
control information across the interface has the drawback that it allows untrusted soft-
ware to deliberately modulate some of the information that is necessarily clearly visible
on untrusted media-message destinations, routings, lengths-the sort of information
that traffic flow analysis looks at. Current layered protocols provide some ways :..I which
higher layers can direct the behavior of lower layers to achieve optimization. Current
work in DOS research suggests that layer interface enhancements allowing the passing
of even more control information to lower layers would be useful. However the closing
of these covert channels would require that downward information flow be shut off by
providing even less ability to pass control information than exists in current protocols.
This conflict is unresolved, and it is one of the topics suggested below for future research.

5.1. PROJECT GOALS AND ACCOMPLISHMENTS 257

Solutions to these covert channel problems all involve tradeoffs of functionality and
performance on the one hand against security on the other hand. The parameters
involved in the tradeoff (the value to application programmers of a particular item of
functionality, the performance implications of any design change, and the bandwidth
of a particular covert channel) can only be estimated during early design stages. The
choice of solutions should be put off until the prototype implementation stage.

5.1.5 Problems Arising from Heterogeneity

5.1.5.1 Heterogeneous Networks

It is a design objective of SDOS that its hosts be able to communicate with each other
over heterogeneous networks, rather than being restricted to one particular set of net-
work hardware and software technologies. The main benefit of the use of heterogeneous
networks is to allow the use of existing networks. Many existing networks are not se-
cure. Thus the objective of network heterogeneity becomes the objective of being able
to maintain security within SDOS while using insecure networks for communication be-
tween SDOS hosts. Encryption can protect higher layer data, but some lower layer.
information must travel the insecure networks in the clear, for the simple reason that
header information of the lower three layers of the OSI model (or the equivalent thereof)
must be interpreted in the course of message processing within each insecure node of
an insecure network (for example, ARPANet IMPs). The information handled by those
layers is subject to traffic flow analysis, and also provides a potential covert channel,
as outlined in an earlier section. These problems are addressed, to some extent, by the
SDOS design, but further research would be beneficial.

5.1.5.2 Heterogeneous Hosts

It is a design objective of SDOS that the host-resident software be portable to various
processors and operating systems. The benefits of this heterogeneity of hosts are the
ability to provide varying amounts of processing power to meet the needs of various
applications, and to take advantage of new processors and operating systems as they
become available from manufacturers. (Naturally, the hosts on which SDOS is built must
have hardware and operating system features capable of supporting multilevel security.)

The problems arising from the heterogeneity objective fall into two areas: implemen-
tation costs and architectural questions. There are two kinds of implementation costs:
the cost of actually porting SDOS to a new host, and the cost of designing an interface
that allows it to be ported easily. It is our feeling that, while the former cost should
be borne by the various using organizations that have a requirement to run SDOS on
particular hosts, the latter cost (portable design) should be a part of the initial devel-
opment of SDOS (in other words, we believe that portability to a heterogeneous set of
hosts is an important requirement).

258 CHAPTER 5, FINAL REPORT

The architectural questions that are raised by heterogeneity could be viewed as
merely higher level portability issues, although they do have a more fundamental impact
on SDOS functionality. These questions have the common property that they involve
decisions between using security features in the multilevel secure host operating system
or ignoring those features and implementing analogous, but slightly different, features
in the higher SDOS layers. The economic advantage to using existing features is obvi-
ous. The disadvantage is that various parts of the SDOS security feature set become
constrained by the details of the host operating system security features. One example
is the size of access class labels: the number of different levels and categories that can
be expressed in labels. These difficult architecture/cost tradeoffs must be made, even if
SDOS is designed to run on only one type of host. The requirement for heterogeneous
hosts makes these tradeoffs even more difficult.

The cost tradeoff problems discussed in this section are far from fundamental topics
for computer security research, but they are important nonetheless. Users of secure sys-
tems have as their fundamental objective the doing of the job that is their organization's
reason for existence. Security is merely one of the constraints within which they must
operate; cost is another constraint. Design decisions involving cost must be given serious
attention if a secure systems project is to succeed.

5.1.6 Problems Related to Object Replication

Data replication, or the maintenance of several copies of data on different hosts, is the
primary technique for achieving data availability in the event of host or communica-
tion failures. Data replication is achieved by coordinating reads and writes across all
copies of the data. Much research has been directed toward developing algorithms for
supporting data replication. The algorithms vary with respect to the degree of avail-
ability, consistency and performance that they offer. The consistency, availability and
performance requirements of distributed, highly available applications also vary. The
replication scheme that satisfies best an application's data requirements is dependent
on the application. As a result, replication mechanisms are commonly placed in the re-
source management software component that understands the semantics of the data. In
object-oriented systems such as SDOS, these mechanisms are placed in object managers,
and the object is the granularity at which replication is supported. If replication mech-
anisms were placed in the Object Database instead of object managers then it would be
impossible to tailor the management of replicated objects in an application-specific way.

In addition to the data stored in an object, there is a significant amount of adminis-
trative information that needs to be associated with an object. For example, all objects
in SDOS have access control lists and security labels. Additionally, the set of hosts where
copies of a replicated object reside needs to be maintained. Objects that are replicated
must have this administrative and security-related information replicated as well, both
to avoid bottlenecks and to provide high availability.

Security labels are stored separately from objects in the security database. Access

5.1. PROJECT GOALS AND ACCOMPLISHMENTS 259

control lists are maintained with objects in the object database. The design decisions
that led to this placement reflected the considerations of the desired functionality and
criticality of the information. We have since come to understand that there are additional
trade-offs to consider when the objects are replicated.

When the administrative information is maintained with the object by the object's
manager (in the case of SDOS, the access control lists), the application developer may be
given control over the policy that governs how copies of the information are maintained.
In the case of access control lists, a variety of different policies are conceivable. For
example, strict consistency would ensure that changes to an ACL are propagated to all
copies atomically. However, this would prevent an administrators ability to remove a
client from an access control list when some copies are unavailable. Regardless of the
narticular policy adopted, placing the information with the object provides the maximum
-mount of flexibility possible for setting the replication maintenance policy.

Security labels cannot be maintained by object managers because they are critical
to the enforcement of the mandatory security policy and they are used by other kernel
components. Placing them in the security database forces the security database to
support their replication. This has several implications:

" The security database (i.e., the kernel) must implement algorithms to maintain
consistency between the copies of an object's label. While it is necessary to im-
plement a single policy for maintaining security label replicates, placing these
algorithms in the kernel complicates it. It also requires the security database to
maintain a list of where all copies of an object (or more specifically, its labels)
reside.

* The policy setting the consistency/availability of objects may differ from the policy
determining the consistency/availability of their labels.

" The replication of objects must be coordinated with the replication of their la-
bels. As a result, both the object database and security database must support
operations to replicate and dereplicate an object and its label, respectively. Fur-
thermore, only the object database may invoke the security database replicate
and dereplicate operations; otherwise, label and object copies could be created or
removed in an uncoordinated fashion.

The policy on the replication of security labels is loose consistency: updates to
security labels are propagated as permitted by the connectivity of hosts. Since only
the System Manager may update security labels, we believe this policy is appropriate
despite connectivity problems. This policy also simplifies the replication management
performed by the Security Database.

Section 5.2.1.2 discusses the complications security features introduce for replica-
tion management based on our experience with the formal specification of the Catalog
Manager.

260 CHAPTER 5. FINAL REPORT

5.2 Tasks and Lessons Learned

This section summarizes the work that has been done on the SDOS project, and discusses
some results in more detail than was given in the previous section. The three subsections,
Policy, Design, and Formal Methods, summarize the results that are presented in much
more detail in Chapters 2, 3, and 4 of this report.

5.2.1 SDOS Security Policy

The SDOS security policy was formulated in response to perceived threats to security.
The resulting policy rules can be divided roughly into three groups:

" A discretionary policy, designed to control the use of SDOS' abstract operations
on the basis of client identities;

" A mandatory policy, controlling the flow of information on the basis of DoD secu-
rity levels;

" A configuration policy, defining the system's security "configuration" in terms of a
set of "policy parameters", and controlling the modification of those parameters,
both by system users and by changes to the network connectivity.

The mandatory policy, in turn, is composed of two parts:

1. A policy on message passing. Each system component has a set of levels, called its
label, which records the levels of data the component is authorized to handle. A
component may only send a message with a level from its label, and it may only
receive a message if the message's level is in its label or can be upgraded to be.

The system components are divided into two groups: those that are certified to
handle multi-level data (MLS entities), and those that are not. Those that are not
have singleton labels.

2. A composable policy controlling information flow through the system's MLS enti-
ties.

Several aspects of this policy are noteworthy. First, the mandatory and discretionary
policies are cleanly separated. The discretionary policy is stated in terms of abstract
operations of the object model that SDOS supports. The mandatory pol;cy refers to the
message passing operations which are used to implement the object model.

Second, it is a global policy, giving requirements for the entire system rather than
for individual hosts.

In the following sections, we discuss some ways in which policy concerns in SDOS
differ from those in a centralized system.

5.2. TASKS AND LESSONS LEARNED 261

5.2.1.1 Read-down and Write-up

In a distributed system, a "read" operation will often not be considered a fundamental
operation. A "read" may be composed of a pair of messages: a request to read, possibly
followed by a response. If reading data from a lower level entity is to be considered
secure, as it is in Bell-LaPadula, it is because the request to read send-message causes
no harm. However, the fact that a request to read has been sent is in general as sensitive
as the reader itself, and in general it will downgrade information.

There are two approaches to this problem. One may demand assurance from the
message's sender that the request is overclassified, and can securely be sent at the lower
level. On the other hand, one may demand assurance from the message's receiver that
the information in a high-level request to read will not be used for any purpose other
than initiating the read operation itself. Either approach can be developed. For SDOS,
we have used only the former approach: a request to read can be downgraded in some
cases if a human being decides that it is secure to do so.

In the SDOS design, we have taken the approach that the existence of an entity will
in general be as sensitive as the entity itself. This was done to allow clients to delete
entities at their own level. However, the approach has a drawback: for a "write-up"
operation, in which the client's level has to be dominated by the object's, the location
of the object cannot be found if the search is carried out at the client's level.

We have singled out such "write-up" operations. In the "write-up" mode, a client
chooses to upgrade an operation so that it can be carried out completely at the object's
level. Of course, the client does not know what level that is, and gives up any hope
of seeing a meaningful acknowledgement. However, once the invocation is upgraded,
the system can find the object's level and can carry out the operation. However, an
acknowledgement indicating either that the invocation arrived at the manager or that
the write-up cannot be returned to the client is insecure, because it would convey to the
client that the higher level object exists. Since objects' existence can be used as a covert
channel, no acknowledgement of any kind can be received by the invoking client. As a
result, it is not possible to build a reliable write-up operation.

5.2.1.2 Object Replication

Section 5.1.6 considered the impact of object replication on the management of security
labels. I this section we consider the impact of security on the management of repli-
cated objects. Our formal specification of the design of the Catalog Manager, which
maint -iins replicated directories, provided an opportunity to experiment with a particu-
lar replication management (i.e., concurrency control) mechanism. We first consider this
experience, and then generalize these results to more general replication management
mecl,anisms.

The catalog manager locks out all but one concufrent update to a replicated directory.
A significant fact emerged from the verification exercise: concurrency control as used

262 CHAPTER 5. FINAL REPORT

in the catalog manager, will not interfere with multi-level security. The following two
points explain this:

" When a client invokes an operation on a higher-level object, the SDOS message
switch does not try t, guarantee that the client can use manager services at the
its own level. Instead, the client must choose to let the invocation be upgraded
to the object's level, and surrenders any expectation of an acknowledgement from
the object manager. Because such invocations either fail or are upgraded to their
object's level, the catalog manager is guaranteed to receive only invocaticns at
levels that dominate the level of their object.

" The only invocations that can succeed at levels strictly greater than their object's
level are requests to read ("Lookup") a directory. In the catalog manager as
specified, both read and modify operations are atomic when applied to a single
directory replica. Therefore, a read (Lookup) will never be blocked because a
distributed update is in progress.

The concurrency control mechanisms used by the Catalog Manager, then, only block
operations which write directories at the same level as the concurrent invocations. Since
the clients of these requests are blocked by the activity of clients at the same level, the
concurrency control mechanism does not act as a covert channel.

In general, since accesses to an object may come from clients at many levels, a
concurrency control mechanism that prevents access of one client because of accesses of
other clients at higher levels will be insecure. The specific problem that arises is that
clients reading down to objects may cause lower level (writing) clients to be blocked, and
this execution delay is a covert channel. For example, read/write locking is insecure,
because higher level clients can lock an object for read and cause lower level writing
clients to be blocked. In contrast, voting algorithms do not block read-Gowns, and
therefore are not insecure.

5.2.1.3 Restriction: Hook-up Security

The part of the mandatory policy that controls message passing eliminates direct down-
grading of data. However, it is the other part, the policy for each multi-level secure
entity, that prevents information compromise via covert channels. That policy must
guarantee that the levels an MLS entity assigns to each message are not underestimates
of the sensitivity of the message's content. We describe that policy now.

We have used the multi-level security policy of McCullough [McCullough 87]. That
policy defines security in terms of information flow. Information flow is defined in terms
of the deducibility of facts about the history of inputs received by a component. A
system component is secure if it does not allow information to flow from high security
levels to lower ones.

5.2. TASKS AND LESSONS LEARNED 263

The McCullough policy goes beyond this, however. It has the additional property of
composability, two MLS components, when hooked together, form a larger component
that is also MLS. A component with this property is sometimes called "hookup secure",
but in this report, we have called these components restrictive. (Other properties exist
that limit deducibility and are also composable in the above sense.)

The SDOS policy requires that the collection of all MLS entities be restrictive. Since
restriction is a composable property, it is sufficient to verify that each MLS component
is restrictive. The fact that security verification can be decomposeu ii this fashion is a
tremendous advantage when trying to verify security for a distributed system such as
SDOS.

The fact that MLS components must be restrictive is also an advantage when a secure
system is to be extended. Extensions may include either new hardware or new software.
In SDOS, extensibility means adding new object managers to the system to define new
classes of objects and new abstract operations on those objects. If a new component is
added to SDOS, and if it is verified to be restrictive with the same degree of assurance
as the original system, then adding the component will create a new system that is also
restrictive. The information flow security of the new system can be guaranteed with the
same degree of assurance, and without a re-verification.

Our work on SDOS is aimost certainly the first attempt to verify the property of
restriction for a secure operating system.

5.2.1.4 Configuration Policy

The need for a configuration policy follows naturally when considering security in a dis-
tributed system context. The system's security is configured by a set of values called here
policy parameters. These parameters include the security labels of system components,
discretionary access control lists, and the results of specific choices such as whether audit
records are kept, and whether the system can be extended with new trusted software.
The system's security configuration may change with time. The configuration policy con-
strains who may cause these changes, and what consistency is required between security
configurations on different SDOS hosts.

5.2.2 Design

5.2.2.1 Overview of Design

SDOS, like Cronus, is an object-oriented system. Objects are instances of abstract data
types. The definition of a type includes the set of operations that are possible for objects
of that type. There is a hierarchy of types: types inherit operations from their parents.
Clients (processes acting on behalf of users) access objects by invoking operations on
them. The invocation of an operation is the only way to access an object. Operations
are implemented by object managers. A manager hides the internal representation of an

264 CHAPTER 5. FINAL REPORT

object from a client, and provides a precisely defined high level interface to the object.
All resources in the system are represented by objects, and all operations are carried out
as described above.

The SDOS TCB consists of the kernel, and a set of trusted managers that provide
system services. The trusted managers operate according to the object-oriented abstrac-
tion described above. Since the kernel is the entity that implements the object-oriented
abstraction, that abstraction is not available for use within the kernel.

The kernel consists of the message switch, the locator, the process manager (so-
named for historical reasons-it is an internal part of the kernel, and not an object
manager), the security database, the object database, and the process table.

The trusted managers include the file manager, catalog manager, authentication
manager, and trusted interface process.

The function of each of these TCB components is briefly described below. More
detailed descriptions may be found elsewhere in this report.

" Message Switch: Routes messages between entities, both locally and remotely.
Enforces the mandatory security policy governing the passing of messages between
entities. Communicates with its peer message switches on other hosts, and coop-
erates with them in the passing of messages and the enforcement of the security
policy.

* Locator: Locates objects that do not reside on the local host. Provides this ser-
vice only to the local message switch. Maintains a cache containing the locations
(remote host identifiers) of recently used remote objects. Remote objects are lo-
cated by broadcasting a request for the object to all hosts. If no positive response
is received after a suitable interval, failure is reported to the message switch.

" Process Manager: Creates and destroys processes, and maintains (sets and
shows) process bindings. Process bindings is the term for the set of information
that includes a user's identity, and mandatory and discretionary access control
attributes.

" Security Database: The collection of data needed for the enforcement of the
mandatory security policy. This information includes, for each entity on a host:
an access class label; a switch indicating single-class or multilevel-secure; for a
replicated object, the number of replicas in the system; and for an object type,
information about its manager, including: whether local managers exist, whether
they are active, and the location of their executable code.

" Object Database: Provides storage for all objects that reside on the local host.
Used by object managers.

" Process Table: Contains information about all active processes on the local host,
including the process bindings. Maintained by the Process Manager. Consulted
also by the Message Switch, when making mandatory access control decisions.

5.2. TASKS AND LESSONS LEARNED 265

" File Manager: A multilevel secure manager, allowing the write-up and read-down
operations. Also implements create, delete, open, and close operations.

" Catalog Manager: Provides an abstract space of symbolic names for objects.
Translates from an object's symbolic name into its UID. (The UID is used to
reference an object when invoking an operation.)

" Authentication Manager: Implements login and logout requests from interac-
tive users. Sets appropriate process bindings for users logging in.

" Trusted Interface Process: Implements a trusted path between the system and
an interactive user at a terminal. Maintains the state of the terminal, with respect
to whether or not a user is logged in. Relays login requests to the authentication
manager. Relays the requests of a logged-in user to other parts of the system
Could be called the Trusted Terminal Manager.

5.2.2.2 Enforcing Security

5.2.2.2.1 Location of Security Mechanisms One of the fundamental decisions in
the design of a secure system is the choice of locations for the implementation of security
mechanisms. In the case of the mandatory controls in SDOS, the choice was rather clear.
The mandatory security policy is based on message passing; the message switch is the
entity which is responsible for the passing of messages; therefore the message switch is
the natural place to implement the mandatory controls.

For discretionary controls the choice was more difficult. The SDOS discretionary
control scheme, which is based on that of Cronus, allows, in general, for a different set of
discretionary control rules for each object type. The SDOS discretionary control scheme
is summarized below, and discussed in great detail in Section 3.6.4 . Briefly, an ACL
consists of a list of entries, each of which consists of some client identification information
(details omitted here), and a list of the operations which the bearer of that identification
is permitted to invoke on the object. The set of legal operations is different for each
object type. Therefore the set of operations that can appear in an ACL entry is different
for each object type, and the code that searches and interprets an ACL must be different
for each object type. This argues for placing ACL interpretation in the manager of each
object type. However, managers are assumed to have low assurance, being writable by
users. The idea that it is acceptable for DAC to have lower assurance than mandatory
controls has gained some acceptance recently, but to suggest that DAC be implemented
in user programs of no assurance whatsoever would be going too far. In fact, we do not
suggest this. Elsewhere in this report, we discuss the possibility that using organizations
would in some cases have to develop the expertise required to write multilevel secure
managers. We here suggest that all using organizations that wish to extend the system
by defining new types and writing managers for them will need to have the capability of
writing managers of at least C2 assurance, in order to provide acceptable discretionary
controls.

266 CHAPTER 5. FINAL REPORT

The choice of location for the encryption mechanism was fairly straightforward. En-
cryption of data being sent out over an untrusted network is done in or near the IP
sublayer of the Network layer. This is the lowest place in the OSI model where end-
to-end encryption can be done across the internet. Encryption at a lower point would
interfere with the operation of the network layer in untrusted network nodes. Encryption
at a higher point would result in the passing of more unencrypted information in mes-
sage headers, and require individualized encryption mechanisms for each of the higher
layer protocols.

5.2.2.2.2 Disrretionary Controls The SDOS discretionary access control mecha-
nisms are based on access control lists. However, several aspects of their design distin-
guish them from conventional approaches, including their support of roles, nondiscre-
tionary rights, direct operations, intermodule connection control, and proxies.

Discretionary controls are type specific, as each type defines the privileges clients
may have to invoke operations. Clients are identified by a principal (user) and project
(task or group). A client may be associated with several different projects (though
always acting on behalf of exactly one), and in a different capacity in each project. For
example, a client may be an operator for one application but a developer for another.
The different capacities, or roles, in which a client acts determine the operations that
are available to the client to access objects. Roles tend to have similar meaning across
many different types, thus providing an aspect of uniformity to the type independence
of SDOS access control.

The operations in an access control list are divided into discretionary and nondiscre-
tionary categories. The degree to which an operation is discretionary reflects the extent
to which its entries in access control lists may be modified. Discretionary operation en-
tries in an access control list may be modified by a group of users for a type having the
Controlling Group role. Nondiscretionary operation entries in an access control list may
only be modified by the System Manager. Since intervention by the System Manager
is expected to be rare, the extent to which modifications to nondiscretionary operation
ACL entries may change is highly constrained.

Direct operations are operations which only may be invoked by a trusted Terminal
Interface Process. Thus, operations which should only be invoked by humans can be
protected from inadvertent or malicious invocation by application software.

Object-oriented systems invariably create instances of nested object invocations,
where client A invokes an operation handled by manager B, which in turns invokes
an operation handled by manager C. For example, a process authenticating itself causes
the Authentication Manager to invoke a nested call to set its process bindings for discre-
tionary access control. In many instances, the nested call should be made on behalf of
(i.e., using the identity of) the original client. Clients may send proxies, or a highly con-
Ftrained part of their identity, to managers, which can then act on behalf of that client's
limited identity. Proxies constrain the behavior of malicious managers and assure that
managers cannot take on illegal or forged identities.

5.2. TASKS AND LESSONS LEARNED 267

Module interconnection controls refers to the control of which modules (clients) can
call other modules (managers). For example, only the Authentication Manager should
be able to invoke the SetProcessBindings operation for a process. SDOS discretionary
controls allow a manager to determine the identity of the client, even when the client is
acting on behalf of another client by using a proxy.

5.2.2.3 Host Operating System Security

SDOS, like Cronus, is a collection of higher layer software that is implemented on top of
an existing operating system in each host. Unlike Cronus, which is implemented on top of
systems such as UNIX and VMS which are rated below B, SDOS must be implemented
on top of a secure host operating system with at least a B rating. This is necessary
in order to provide the required assurance that the SDOS security features cannot be
tampered with. The Criteria mandate at least B2 assurance for multilevel security. The
design objective of SDOS is an Al rating. Thus, the host operating system(s) on top of
which SDOS is implemented must have a minimum of a B2 rating, and ratings of B3 or
Al are more desirable.

5.2.2.3.1 Advantages and Disadvantages of MLS Support Operating systems
having B2 through Al ratings will have multilevel security policies built into them. These
policies will all be different from the one designed for SDOS. Some may be similar, while
others may be completely incompatible. The reason for building on top of a secure
system is to benefit from its assurance. The policy comes with it for free, and we must
decide what to do with it-use it or ignore it. The temptation is strong to use it, for
economic reasons. This may or may not be possible, depending on the policy of the
particular system chosen. Any decision to use the policy of an existing system will
involve some changes to the designed SDOS policy. These changes may range from
changes so fundamental as to be unacceptable, to changes in unimportant details.

A decision to ignore the policy of an existing system also has its drawbacks. The
security mechanisms in the existing system will continue to operate and contribute to
overhead, even if SDOS is built on top of it in such a way that the existing policy does
not restrict SDOS (for example, by labeling all SDOS entities with the same access class
label in the existing system's label set). This decision will also tend to increase the
SDOS implementation cost.

5.2.2.3.2 Desirable Host Operating System Properties A secure operating
system that is a good candidate on which to implement SDOS will provide the following:

* assured process separation - the ability to prevent direct interprocess communi-
cation that is not controlled by the system;

" non-interference with process operation - SDOS processes responsible for security
must not be tampered with;

268 CHAPTER 5. FINAL REPORT

9 stable storage - data needed for enforcing security, such as user authentication
data, must be stored in a fault-tolerant and protected manner.

In addition, the good candidate will have a multilevel security policy that lends itself to
being used to implement the SDOS policy, rather than being ignored.

5.2.2.4 Network Security

5.2.2.4.1 Open vs Closed Networks A closed network is one whose nodes and
inter-node communications media are under the physical control of the using organiza-
tion, such that their security can be assured, making it practical to implement multilevel
security in the nodes. An open network, on the other hand, uses public communications
media (such as phone lines or radio signals) and public nodes, such as those in com-
mercial packet switched networks or in the ARPANet. Physical security of the nodes
and media of a public network can obviously not be assured, so multilevel security is
impractical. It is a design objective of SDOS that the system be able to maintain its own
security even when it is operating over an open network. The reason for this require-
ment is a practical one: open networks are prevalent, and becoming more so every day.
Closed networks are relatively rare, usually unavailable, and costly and time-consulitng
to construct and maintain.

5.2.2.4.2 Encryption Encryption is the usual solution to the problem of maintain-
ing security of communications across an open network. Two classes of encryption are
of interest here: link encryption and end-to-end encryption.

Link encryption protects data on an insecure medium that is being used for com-
munication between two secure network nodes. Messages being relayed through several
nodes to an ultimate destination are decrypted and re-encrypted at each intermediate
node.

End-to-end encryption is used by higher layer entities to protect data from untrusted
lower layers or from untrusted nodes in an open network. Messages are encrypted by the
sending higher layer entity, decrypted by the receiving higher layer entity, and remain
encrypted while moving through lower layers and intermediate network nodes.

End-to-end encryption has the advantages that the encryption and decryption are
only done once for each message, and that layers below the encrypting layer, and inter-
mediate network nodes, do not have to be trusted. It has the disadvantage that message
headers for the layers below the encrypting layer travel the network in the clear. The
information in these headers is subject to traffic flow analysis. Further, as suggested
earlier, there is a potential covert channel if untrusted software above the TCB is able
to exercise control over lower layer operation in ways that would modulate the lower
layer header information.

Link encryption has the advantage that all information carried on the insecure

5.2. TASKS AND LESSONS LEARNED 269

medium is protected. It has the disadvantage that all layers down to the physical layer,
and all intermediate network nodes, must be secure. In other words, link encryption
implies a closed network.

Since the use of open networks is a requirement for SDOS, we have chosen to use
end-to-end encryption, in the i? sublayer of the Network layer. This is the lowest point
at which end-to-end encryption can be done without interfering with the activities of the
network layer in intermediate untrusted nodes of an open network. This allows layers
below the point of encryption in each SDOS host to be untrusted. Layers at and above
the point of encryption, up through the TCB/application interface, must be in the TCB.

5.2.3 Formal Methods

One of the goals of this project has been to formally verify that the SDOS design meets
the requirements of the SDOS security policy. This would give high assurance that the
design is "secure". Much of our work toward this goal has focussed on verifying the part
of the mandatory policy requiring constraints on information flow.

We have formalized the design of SDOS as a program in Gypsy jGood et al. 783. To
prove, using the Gypsy methodology, that a program meets it requirements, one must
express those requirements as assertions that are true at particular times during the
execution of the program. We found, however, that the information flow constraints
of the SDOS policy cannot be directly expressed in this way. Other approaches were
needed.

5.2.3.1 A New Security Methodology

Our emphasis on mandatory information flow security is a result of the emergence of
a new methodology for security verification. The aim of this methodology is security
verification through analysis. In other words, large designs can be decomposed into
smaller ones, and the security of the larger can be inferred once the properties of the
smaller are known. This approach has obvious merits, but it is only recently that it has
been applied to formal specifications for information flow security.

The work of McCullough [McCullough 87] is a particular case of this new method-
ology. In his work, system components are defined in terms of their possible be-
haviours; the approach he used simplified and slightly modified the approach of CSP
[Brookes et al. 84]. The hook-up, or composition, of two components is defined as in
CSP. McCullough searched for, and found, a property that captures many desirable fea-
tures of information flow security and is also a composable property: the hook-up of two
components with the property is a new component with the property. We have called
his security property restrictiveness, or restriction.

The verification work presented in this report ties into the new methodology. The
SDOS security policy requires that the entire trusted part of the system be restrictive.

270 CHAPTER 5. FINAL REPORT

We have endeavored to show that the multi-level secure processes that comprise SDOS
are each restrictive, so that the restrictiveness of the entire system can be inferred
from composability. However, the problem of demonstrating the restrictiveness of each
MLS process remains. One way in which we have handled this problem is to find
other, simpler, properties, which when taken together, imply the restrictiveness property.
These simpler properties are then proved, using Gypsy, for each component. We needed
to develop special techniques for proving some of the simpler properties using Gypsy.

Other than restrictiveness, we formally defined several properties that are "security-
like", in the sense that they also limit deducibility, and hence, information flow. Of
primary importance is the property called weak non-interference (WNI). The WNI
property limits deducibility in a way that is similar to the Goguen-Meseguer model
[Goguen and Meseguer 82]. However, WNI is both weaker than restriction, and not
composable. By conjuncting several other simple properties with WNI, however, we can
infer restriction.

As stated earlier, Gypsy is ill-suited to direct verification of properties such as re-
striction and WNI. Each is a property of the form: "Given any history a, there must be
a history b such that P(a, b) holds." Essentially, one is required to show the existence of
particular histories of a component. Gypsy embedded assertions, though, state require-
ments of individual histories, taken in isolation. They never directly imply the existence
of any history. However, simply changing the specification language was unlikely to
solve the problem: other popular specification methodologies used for proving invariant
properties of state machines would fare no better.

We developed a technique for proving that WNI holds for a design expressed in

Gypsy. The technique does not supply embedded assertions for the design itself, but
rather, it first transforms the design into a new form, and then supplies assertions about
the new form that imply WNI. The restrictiveness of a design is to be inferred from
the fact that it satisfies WNI, plus other simpler properties. This "program transfor-
mation" technique essentially shows that an alternate history exists by constructing it
from the actual history. The transformed Gypsy design contains the state variables and
control structure of the original design, but replicated, so that the two histories can be
constructed in parallel.

Decomposing restrictiveness into simpler properties can now be seen as an advah-
tage, since these simpler properties turn out to be easier to handle in this program
transformation technique.

In verifying the information flow security of various SDOS components, we found

that the definition of security as restrictiveness may not always be appropriate. We
needed generalizations of the property to permit the following:

" limited downgrading of information by way of covert channels;

" special protocols used in communication between components;

" assumptions about the boundary between the assured system components and

5.3. POSSIBLE FUTURE DIRECTIONS 271

process and users with limited or no assurance.

The report contains some successes in these directions. However, the subject is far from
closed.

5.3 Possible Future Directions

The work described in this report has only made a start toward the development of a
secure distributed operating system. There is more work to be done, in a number of
areas, ranging from the very theoretical to the very practical. Several of these areas are
described below.

5.3.1 Prototype Implementation

The development of a prototype SDOS would have a number of useful results. It would
allow the concepts described in this report to be tested and proved in a practical setting.
It would uncover any ideas that look good on paper but prove to be impractical dur-
ing implementation. It would allow measurements to be made of performance-critical
operations and of covert channel bandwidths, and experiments to be made to speed up
the former and slow down the latter. It would allow experimental applications to be
developed using the facilities provided by SDOS, to determine their suitability for use in
practical applications. It would be a first step toward the deployment of an operational
secure distributed operating system.

5.3.2 Research Into Layering

Layering, abstraction, and data hiding are thought to be good software desi, 'I method-
ologies, and their use in secure systems is mandated by the Criteria. In any layered
software system that is undergoing evolution and change, there arise occasions where
the addition of some function or the improvement of some existing function requires
the passing of information and control across layer boundaries in ways that were not
intended when the boundaries were originally defined. Often some compromise of the
strict layering rules will be made to avoid the need to completely re-modularize the sys-
tem and redefine the layers to accommodate the change being made. But is is usually
thought that such a layer redefinition could always be done successfully if resources were
available.

Layer violations in SDOS are especially troublesome, because we depend to some
extent on the restrictior _f downward information flow between the layers to limit the
bandwidth of some covert channels. For this reason, careful attention must be given to
modularization and layering within SDOS. We have the layers of the SDOS kernel and
the trusted managers, the layers of the multilevel secure operating system in the host,

272 CHAPTER 5. FINAL REPORT

and the layers of the OSI model. SDOS development involves the evolution of the Cronus
kernel into the SDOS kernel, the addition of security features to the communications
layers, and the integration of these two sets of layers with those of the TCB of the
host operating system. It has been difficult to create a layer diagram that clearly and
correctly represents the relationships between all of these components of the system.

Further work in this area might result in a redistribution of functions between the
layers, that resolves these problems. On the other hand, it might result in the conclusion
that the relationships between the entities in a system of this size and complexity are too
complex to be described by the one-dimensional ordering represented by a traditional
layer diagram, and that some multi-dimensional representation is more appropriate for
describing their relationships.

5.3.3 Research into formal methods

Several points should be noted conceraing the limitations of the formal methods of
verification discussed here.

In practice, the Gypsy program transformation technique is clumsy. The practi-
tioner not only needs to combat the difficulties of using Gypsy, but must also carry
out many tedious transformation steps manually. When an error is discovered in
the transformed program, not only that program, but the original source must be
corrected. Complicated assertions must be given at many places in the text of
the transformed program. Many of the verification conditions have a repetitively
similar form.

None of this is intrinsic to the method. Many of these difficulties could be relieved
by automated support.

" In at least one place, the design of SDOS depends on non-determinism for its
security. (The security database uses random numbers to generatc identifiers se-
curely.) However, the methods we developed for proving non-interference using
Gypsy are not applicable to non-deterministic designs. Not only are Gypsy proce-
dures intended to model just deterministic algorithms, but showing the existence
of traces in a non-deterministic system is a harder problem in general than in the
deterministic case.

" The method of decomposition called "input-limited restriction" is only a simple
example of a larger search: if two components agree to communicate using some
protocol, and the security of each is made dependent on whether the other obeys
the protocol, what component properties and interesting protocols can be used to
hook together a restrictive system?

" In cases that a covert channel could not be eliminated completely from an SDOS
component, the component obviously could not be proved restrictive. But leaving
such a component unverified is not satisfactory. Generalized versions of restriction

5.3. POSSIBLE FUTURE DIRECTIONS 273

need to be found, such that limited violations of security are possible. The severity
of the violation can be controlled and quantified. The work appearing at the end
of chapter 4 is an attempt at such a generalization. However, more powerful
extensions can undoubtedly be found.

Each of these points represents an avenue of possible future research.

Appendix A

The Gypsy Specifications

A.1 Notes on the Gypsy Specification

The Gypsy specification that follows was developed and parsed under the GVE, Version
2.05, running on the Symbolics 3600. The specification is not entirely straightforward,
and therefore a few explanatory comments are in order.

The specification is divided into several Symbolics files. This has the advantage that
proving a particular file may not require that all other files be loaded at once. Also, when
file A is altered, in addition to A only those files which reference symbols in file A must
be reloaded. A slight disadvantage is that the structure of symbol references between
files will force files to be loaded in order. The files of the specification include: a file of
globally-visible types declarations; a file of globally-visible function declarations; several
MLS type managers; the MLS terminal interface processes (TIP). The type managers
and the TIP may each be loaded separately, but only after the types and functions have
been loaded.

The types defined in the type-declaration file apply throughout the spec. Type
managers will have their own particular types, such as the names of particular operations
they implement, and these are declared separately in each type rnanager file.

The types 'abst-op' and 'abst-type' must occur wherever the object model is used.
There are a number of constants of each type which represent abstract types and oper-
ations known to the kernel. These include all operations which may be invoked on the
host itself. They are declared in the global types files.

Gypsy does not allow dynamic creation and destruction of concurrent processes. Be-
cause all SDOS processes, hosts, and users will be represented by concurrent Gypsy
processes, all such entities which could conceivably be created must be declared be-
forehand. Because the current version of Gypsy requires that cobegins of processes be
indexed by integer types, we have given these potential entities 'names' which are in-
tegers. These names may be thought of as external names, or, in the case of SDOS

275

276 APPENDIX A. THE GYPSY SPECIFICATIONS

processes, as the names which identify each process to the underlying COS. They are
not to be confused with SDOS internal names, such as UIDs. Part of the task of the sys-
tem will be to generate the internal names, and possibly to remember various relations
between internal and external names. The ranges of external names for users, hosts, and
processes are declared in the global types file.

In order to specify communication between each instance of the kernel and type
managers running on the same machine, we must give particular external names to the
type managers we specify. The kernel itself is in a unique situation since all buffers lead
either to or from it (representing COS-enforced process separation), and therefore no
external name need be given to it. In contrast, each type manager we specify is assigned
a specific integer; without loss of generality, these are assigned counting up from the
minimum 'minproc'. The set of external names for all other processes is then the integer
range rImingenericproc..maxproc].

Communication between kernel and local processes, and kernel and network, is rep-
resented by Gypsy buffers. There is only one type of communication event in the spec:
'sendmessage'. All buffer types are therefore equivalent. The specification shows each
sendmessage as a record with fixed fields, the same for every message. Each sendmessage
has a 'level' field which indicates the level of the message being sent.

In an actual system, messages may undergo packing and unpacking appropriate to
the particular kind of message being sent. These transformations could be represented
by functions which convert between an abstract (packed) data type and concrete (un-
packed) types. However, displaying these functions certainly detracts from clarity of the
specification, and instead we have included enough specific message fields that very few
operations defined on the host type will require packing. Some of the fields may remain
unused in specific messages, though. Operations defined by other type managers may
require either more than this number of fields, or fields of different (Gypsy) type. In
every such case, the fields 'sendmessage.invoke.param' and 'sendmessage.reply.param'
hold an object of type 'data', which may be unpacked into the specific (Gypsy) types
needed by particular type managers.

The COS is not represented explicitly. It could have been included as a separate,
concurrently running process, sharing buffers with each local process and the network.
Its functions would then be:

" handle network protocol.

" correctly identify the source of messages, and pass them through to the kernel.

* maintain the host's stable storage (represented as local Gypsy variables).

These three functions have been combined (implicitly) into the kernel specification.
Interactions between kernel and COS have been modeled as updates to local variables,
and the fact that operations may be left pending as a result of the kernel-COS interaction
has been ignored.

A.l. NOTES ON THE GYPSY SPECIFICATION 277

MLS managers outside the kernel must control the level they affix to outgoing mes-
sages based on the levels of messages they receive. Demonstrating that this is done
correctly is the central problem of multi-level security.

A.1.1 Conventions used in the Gypsy FTLS

This section aims to clarify some conventions used in the Gypsy specification.

The basic function of the system as specified is to support the invocation of abstract
operations on abstract objects. The message switch supports the routing of such in-
vocations and their replies, while the various managers support the processing of the
abstract operations themselves. The managers and the message switch must agree on
various matters of protocol at their interfaces. Our purpose in this section is to describe
their protocol.

Every invocation, reply, or direct inter-process communication (IPC) is packaged in
the same form: as a value of Gypsy type 'sendmessage'. The sendmessage type has these
fields:

" The field '.control' is used to distinguish invocations ('InvokeOp') from replies
('ReplyOp') from IPC ('SendOp'). Different values for '.control' cause different
methods for message routing in the message switch.

" The field '.invoke' is used to record parameters of the invocation, including its
object, its abstract operation, and any operation-specific parameters. The client
who initiates the invocation fills this field, and may expect that if and when a reply
is received, the value of this field will be unchanged. A process sending IPC may
also fill the '.invoke' fields with message-specific information, and may also expect
that any reply to the send will leave the information unchanged.

" The field '.reply' is used to record responses to invocations and sends, including
whether there was an error, the appropriate error code, and any operation-specific
data to be returned. A manager which processes the invocation will normally fill
this field, change the '.control' field from 'SendOp' to 'ReplyOp' and expect that
the message switch will route the reply back to its client.

" At the time a message is delivered, the field '.sender' indicates the UID of the
message's sender. For sends and invokes, the message switch simply fills in the
UID of the sending process. For replies, the sender of the reply will normally copy
the '.sender' field of a previous send or invoke into the '.sender' field of the reply
to indicate its destination. In this case, the message switch then uses the '.sender'
field to determine routing, but before delivering the message it overwrites the field
with the UID of the sender of the reply. (In this way, an invoke can be returned
to its sender merely by changing '.control' to 'ReplyOp'.)

" At the time a message is delivered, the field '.SenderHost' indicates the location
of the message's sender. It is filled by the message switch. During processing of

278 APPENDIX A. THE GYPSY SPECIFICATIONS

a 'ReplyOp', the sender of the reply will normally copy the '.senderhost' field of
a previous send or invoke into the '.senderhost' field of the reply to indicate the
location of the destination. In this case, the message switch then uses the '.sender-
host' field to determine routing, but before delivering the message it overwrite the
field with the UID of its own host.

" The field '.receiver' is supplied by the client when the sendmessage is a 'SendOp'.
It is expected that the message switch will route the message to this UID. In other
cases, this field is not filled by the client, but rather by the message switch once
the receiver is determined. In the case of an invoke, '.receiver' is filled once it is
determined to which type manager the invoke will be routed. In the case of a
reply, '.receiver' is copied by the message switch from '.sender'.

" The field '.transaclbl' is used to assign a transaction number to an invocation
and any secondary invocations and replies which may follow from it. This will
normally be needed by a manager to distinguish replies to invokes which may
coincidentally have the same value for the '.invoke' field. It will also be useful
for relating nested transactions. Normally a manager receiving an invoke or a
send will generate a new transaction number to be used for all ensuing processing.
However, when replying to an invoke or send, a manager is expected to return its
client's transaction number unchanged.

* The field '.level' is used to indicate the level of the sendmessage.

A number of special sub-fields have been supplied as components of '.invoke' and
'.reply'. These are normally filled with information needed by particular, frequently-
occurring invocations. When an invoke is made on the host, to read the ODB or the SDB,
for example, the '.invoke.object' subfield is the UID of the host, while the '.invoke.objpar'
subfield may be filled with the UID of an object to which the invocation is related.

The subfields '.invoke.param' and '.reply.param' are catch-all fields which can be
filled with data which is peculiar to each particular abstract type.

Processes in the Gypsy specification are not expected to fill all these fields for every
message. In most cases, there are many fields which are not relevant to the particular
message being sent.

A.2 Global Type Declarations

scope sdos
begin

{ some general SDOS types }

A.2. GLOBAL TYPE DECLARATIONS 279

type data =pending;
type uid pending;
type uidset - set of uid;
type uidseq - sequence of uid;

{ types relating to multi-level security I
type level - pending;
type label - set of level:
const l:label :- pending;
const sys..hi: level :~pending;
const host-.hi: level :=pending;

coast host..lo: level :=pending;

conat syajlo: level :~pending;
type mls-.attrib -boolean;

{ abstract types of the object model}
type abet-.type - pending;
const ProcessType: abst-.type :- pending;
conat HostType: abst..type :- pending;

type abst-.messages -(ImUse, Undef Op. NotOpen. Already~pen. NoMesg.
foPermiss ion, DoestlotExist, Invalid~p. IncorrectLevel,

AlreadyExists, Waiting.
ObjectOnly, ManagerOnly, Objectand~anager);

(abstract operations of the object model I
type abst..op -pending;

const LocateUid: abst-.op :- pending;
conat CreateODEEntry: abst-.op :- pending;
const ReadaDBEntry: abst-.op :-pending;

const ',riteODBEntry: abst..op :pending;
const 1M.odifyODBEntry: abst-.op :=pending;
const RemoveODBEitry: abst-op :pending;
const CopyODBEntry: abst.op :- pending;
const ReplicateODEEntry: abst-op :- pending;
const DereplicateODBEntry: abst-.op :- pending;
const CreateSDBEntry: abst-op :- pending;
const ReadSDBEntry: abst-.op :- pending;
const ModifySDBEntry: abst-op :pending;
const RemoveSOBEntry: abst..op Upending;

const ReplicateSDBEntry: abst-.op :- pending;
const DereplicateSDBEntry: abet-op Upending;

const Incrementfteplicallo: abst-.op Upending;

const Decrementfteplicatio: abst-.op :pending;

const SetProcessflindings: abst-.op Upending;

const ShowProcessBindings: abst-.op Upending;

280 APPENDIX A. THE GYPSY SPECIFICATIONS

const ResetProcessBindings: abst-op :- pending;

const ChangeActiveCCl: abst.op :- pending;
const DetermineClientId: abst-op :- pending;
const ObtainProxy: abstop : pending;
const CreateProc: abstop : pending;

const RemoveProc: abstop : pending;

C names for all possible users }
const minuser: integer : pending;

const maxuser: integer : pending;

type username - integer(minuser..maxuser];

type userboolarr - array (username) of boolean;

(explicit names for special users}

const system-manager: integer:- minuser;

{ names for all possible hosts }
const minhost: integer :- pending;
const maxhost: integer : pending;
type hostname - integer(minhost..maxhost];

type hostboolarr = array (hostname) of boolean;

type hostnamemap - mapping from uid to hostname;

type hostlblmap - mapping from uid to label;

{ names for all possible processes,
including type managers, but excluding kernel and tips }

const minproc:integer : pending;
const maxproc:integer : pending;
type procname - integer[minproc..maxproc];
type procname_3 integer[minproc+3..maxproc];
type procboolarr - array (procname) of boolean;
type procnamemap - mapping from uid to procname;

{ names for all possible tip processes }
const mintip:integer : pending;

const maxtip:integer : pending;

type tipname - integerfminproc..maxproc];

type tipnamemap - mapping from uid to tipname;

type tiplist - sequence of uid;

(explicit names for special type manager processes }
const catalog-manager: procname :- minproc;

const authmgr: procname :- minproc +1;

A.2. GLOBAL TYPE DECLARATIONS 281

const file-manager: procname :- minproc +2;
const dacmgr: procname :- minproc +3;
const configmgr: procname :- minproc +4;
const pkgmgr: procname :- minproc +5;
conet mingenericproc: procname :- minproc +6;

{ events of the object model }
type invocation - record(operation: abst.op;

object: uid;
objpar: uid;
objparl: uid;
objlbl: label;
param: data;

flag: boolean);
type response = record(error: boolean;

objpar: uid;
objlbl: label;

param: data;
errcode: abet-messages;

flag: boolean);

{ types for communication events and event histories
type controlop = (Invokeop, SendOp, ReplyOp);
type transacno - pending;
type transacuoset = set of transacno;
type sendmessage = record(sender: uid;

senderhost: hostname;
receiver: uid;
control: controlop;

operateup.enabled: boolean;
transaclbl: transacno;
invoke: invocation;

reply: response;

level: level);

type hostbuf - buffer of sendmessage;
type hostbufarr - array (hostname) of hostbuf;
type procbuf = buffer of sendmessage;
type procbufarr - array (procname) of procbuf;
type eventseq - sequence of uendmessage;
type eventarray - array(level) of eventseq;

type object - uid;
type client - uid;

(discretionary access control (DAC) types }
type principal - pending;
type accesurightset - set of abst-op;
type ACL - mapping from principal to accessrightset;

282 APPENDIX A. THE GYPSY SPECIFICATIONS

type DAC = mapping from uid to ACL;

const fixedauth: DAC :- pending;

end; f scope }

A.3 Global Function Declarations

scope sdos = (extending sdos scope}

begin

f auxiliary functions used in kernel }

function dominates(lI,12:level) : boolean - pending;

f return true if security label 11 dominates 12 }

function uidhost(id: uid) : uid =

begin
exit (assume uidtype(result) = HostType);

end;

{ return the uid of the host named in the host field of the uid }

function uidtype(id: uid) : abst-type - pending;

(return the abstract type field of the uid }

function generic-object(at: abst-type) : uid
begin

exit (assume uidtype(result) = at);

end;

(return the uid of the generic object of this type }

function type-object(id: uid) : uid

begin
exit (assume result = generic.object(uidtype(id)));

end;

{ a shorthand for composition of the previous two functions }

function procuid(pn: procname; table: procnamemap) : uid =

begin

exit (assume pn in range(table) -> table(result) = pn);

end;
f compute the inverse of a process table }

function hostuid(hn: hostname; table: hostnamemap) : uid -

begin

A.4. THE FILE MANAGER SPECIFICATION 283

exit (assume hn in range(table) -> table(result) - hn);

end;

{ compute the inverse of a host table }

function host-label(argl:uid; table:hostlblmap) label -

begin

exit (assume argl in domain(table) -> result = table(argl));

end;

end; {scope kernel-scope for auxil}

A.4 The File Manager Specification

A.4.1 Local Function, Procedure and Type Declarations

scope sdos =

begin

const OpenFile: abst.op := pending;

const ReadFile: abst-op := pending;

const WriteFile: abst.op :- pending;
const CloseFile: abst-op : pending;

const CreateFile: abst-op : pending;

const DeleteFile: abst.op : pending;

const markerl: abst-op : pending;
const marker2: abst-op := pending;

type accessmode (Blank, Read, Write, Readifrite);

type objectmap = mapping from object to object;

type cliobjmap - mapping from client to objectmap;

type ghostmap = mapping from level to cliobjmap;

type access.level.list - mapping from client to level;

type accessulevel-table - mapping from object to access.level-list;

type access-mode.list - mapping from client to accessmode;

type access.mode-table = mapping from object to accessmode.list;

(EXPLAUATION OF KEY FUNCTIONS/PROCEDURES:

284 APPENDIX A. THE GYPSY SPECIFICATIONS

update-generic : makes an entry into the table generic

purge-generic : removes an entry from the table generic

already-open : determines if the current client already has access to the
current object at the current level.

(note: this does check .evel not accessmode.
This is a sufficient check because we will not allow a client to open the
same object to read and write at the same level. If the client does desire
to read and write to the object then he must open it for readwrite.]

has-access : checks if the current client already has access to the current
object in the current mode and that the access is permissible. (note: this
does not check level of access]

write-locked-by-another : determines whether
the object is being accessed by another

client at the same level. (The level check is sufficient to determine that
this is a write because read requests are always mapped to ghost files. This
has the added benefit that it would disallow writes to the ghost files that
have been created for the read operation.]

fill-call, fill-reply, fill.call.temp : updates necessary fields in a variable
of type sendmessage. This would then be the invocation on the kernel or a
reply to the client/kernel.
fill.calltemp was necessiated by a bug in handling of record types in
Gypsy.

function already-open(call:sendmessage;TABLE:access-level-table): boolean =

begin
exit (assume result

(call.invoke.object in domain(TABLE) and

call.sender in domain(TABLE(call.invoke.object)) and
call.level = TABLE(call.invoke.object) (call.sender)));
end;

function write- locked-by-another(call:sendmessage;TABLE:accessalevel-table):

boolean =

begin

exit (assume result

(some cl:client,
call.invoke.object in domain(TABLE) and

cl in domain(TABLE(call.invoke.object)) and

cl ne call.sender and

A.4. THE FILE MANAGER SPECIFICATION 285

call.level - TABLE~call.invoke.object) c)));
end;

function has-.access (call: sendmessage;
table: access-.mode..table): boolean =

begin
exit Cassume result

(call.invoke.object in domain~table) and
calsender in dauain(table(call.invoke.object)) and
allovwed~call.invoke.operation. table(call-invoke.object) Ccall.sender))));

end;

procedure update-OPENFOR(calli: sendmessage; var TABLE: access-.mode-.table)
begin
exit ((all oi:object. all ci:client, oi in domain(TABLEV) and

ci in domainCTABLEV(oi)) -> ol in domain(TABLE) and
ci in domainCTABLE~oi)) and
TABLE~oi)Cci) -TABLE'(oi)Cci)) and

[all c: sendmessage,
(c no calli) and

c.invoke.object in domainCTABLE) and
c. sender in domain CTABLE~c .invoke .obj ect))-

c.invoke.object in domainCTABLEV) and
c.sender in domainCTABLE' (c.invoke.object)) and
TABLE Cc. invoke. obj ect) Cc .sender)=

TABLE' Cc.invoke.object) (c..ender)J and
Ccalli.invoke.object in domainCTABLE) and
calli.sender in domainCTABLE~calli.invoke.object)) and
TABLE(call . invoke, object) (call . sender) -

mode-.param(calll .invoke. param)));
end;

procedure update-.OPETAT(calll: sendmessage; var TABLE: access-.level-.table)

begin
exit CUall ol:object. all ci:client. ci in douiainCTABLE') and

ci in domainCTABLE'Col)) -> oi in domainCTABLE) and
ci in domainCTABLE~ol)) and
TABLE~ol) (ci) - TABLE'Ccl) Cci)) and

[all c :sendmessage.
(c no calli) and

cinvokeobject in domainCTABLE) and
cesender in domain(TABLE~c.invoke.object)) -

c.invoke.object in domain(TABLEV) and

286 APPENDIX A. THE GYPSY SPECIFICATIONS

c.sender in domainCTABLE Cc.invoke-object)) and
TABLE~c .invoke.object) Cc. sender)

TABLE Cc.invoke.object) Cc. sender)] and
Ccaill.invoke.object in domainCTABLE) and
calll.sender in domain(TABLE~calll.invoke.object)) and
TABLE~calll.invoke.object)Ccalll.sender) -calll.level));

end;

procedure update..GT(calli: sendmessage; var TABLE: ghostmap)=

begin
exit (Call ol:object, all cl:client, all l1:level,

11 in domainCTABLEl) and
ci in domain(TABLE'(li)) and
ol in domain(TABLE'(lX)CcI)) ->

11 in domainCTABLE) and
cl in domainCTABLE(li)) and

ol in domainCTABLE(ll)(cl)) and
TABLEUl1) (c 1) Co 1)

TABLE'(11)Ccl) (ol)) and

Call c: sendmessage,
c ne calli and

c-level in domainCTABLE) and
c-sender in domain(TABLE~c.level)) and
c.invoke.object in domain(TABLE~c.level) (c.sender)) -

clevel in domainCTABLE') and
cinender in domainCTABLEV(c.level)) and

c -invokce. obj ect in domainC(TABLE' Cc. level) Cc. sender)) and
TABLE(c.level)Cc.sender)(c.invoke.object)

TABLE (c.level) (c.sender) Cc.invoke.object)) and

(calll.level in domainCTABLE) and
calli.sender in domain(TABLE~calli.level)) and
call1. inivoke. object in domain (TABLE (call 1 level) (cal11. sender)) and

TABLE~calll.level)(calll.sender)(calll.invoke.object)
calll reply. obj par)

end;

procedure purge-.OPENFOR(calll: sendmeunage; var TABLE: acceus..mode..table)
begin
exit (Call cl:client, all ol:object,

ol in domainCTABLE) and

A.4. THE FILE MANAGER SPECIFICATION 287

ci in domainCTABLE~ol)) -> ol in domainCTABLEl) and
cl in domainCTABLE Cal)) and
TABLE~ol) (cl) - TABLE'(oi) Ccl)) and

(all c :sendmessage,
c ne calli and

c.invoke.object in dornainCTABLE') and
cusender in domainCTABLE' Cc.invoke.object)) -

c.invoke.object in domainCTABLE) and
c. sender in domain(TABLE(c .invoke, object)) and
TABLE(c.invoke-object) (c.aender)

TABLE' Cc.invoke.object) Cc.sender)) and
not (calli sender in domainCTABLE(calll.invoke.object))));

end;

procedure purge-OPEIIA?"call1: sendmessage; var TABLE: access-.level-table)=
begin
exit (Call cl:client, all ol:object,

ol in domainCTABLE) and
ci in domainCTABLE~ol)) -> ol in domainCTABLE') and

cl in doiuain(TABLE'Col)) and
TABLE~ol) Ccl) - TABLE Col) Ccl)) and

(all c :sendmessage,
c ne calli and

c.invoke.object in domainCTABLEI) and
c.sender in domainCTABLE' Cc.invoke.object)) -

c.invoke.object in domainCTABLE) and
c .sender in domain CTABLE~c. invoke, object)) and
TABL.E~c.invoke.object) (c.sender)

TABLE' Cc.invoke object) Cc.sender)) and
not Ccalli-sender in domainCTABLE~calll.invoke.object))));

end;

procedure purge-GT~calll: sendmessage; var TABLE: ghostmap)=
begin
exit (Call cl:client, all ol:object, all li:level,

11 in domainCTABLE) and
ci in domain(TABLE(l)) and
ol in domainCTABLE~ll)Ccl)) ->

11 in domainCTABLE') and
ci in domainCTABLE'Cll)'f and

ol in domainCTABLE'Cll) Ccl)) and
TABLE~li) (ci) Cal) - TABLE' (11)Cci) Col)) and

(all c: sendinessage,

288 APPENDIX A. THE GYPSY SPECIFICATIONS

c no calli and
clevel in domainCTABLE') and

c.sender in domainCTABLE'(c.level)) and
c.involce.object in douzain(TABLE' (c.level) Cc sender)) -

clevel in domain(TABLE) and
c.sender in domainCTABLE(c.level)) and

c.invoke.object in domainCTABLE(c.level) (csender)) and
TABLE(c.level) (cusender) Cc.invoke.object)

TABL.' (clevel) Cc.sender) (c.invoke.object)) and

not (calll.invoke.object in domain(TABLE~calll.level) (callisender))))
end;

function has..disc..access(call: sendmessage;
TABLE: DAC) : boolean - pending;

Cdo discretionary access controls defined in 'table'
authorize the file request defined by 'call' ?}

function allowed~op: abst-.op; acc: accessmode) : boolean
begin

exit (assume result
(Cop - ReadFile and acc in (set: ReadWrite, Read]) or
Cop -WriteFile and acc in (set: Write. ReadWrite]) or
(op - CloseFile and acc in (set: ReadWrite. Write, Read]));

end;

function mode-param~par: data) : accessmode -pending;
(decode a parameter into an acceasmode argument}

function purge(trace: eventseq) : eventbeq
begin

exit (assume result
if dominates(l. last(trace).level)
then purge~nonlast~trace)) <: last(trace)
else purge(nonlast~trace)) fi);

end;
{remove from trace all -ents not dominiated by 1}

A.4. THE FILE MANAGER SPECIFICATION 289

function dominates~ll: level; 12: level) :boolean - pending;

function unset~l:label):level -pending;
(the label returned by ReadSDBEntry is actually going to be a one element
set because multilevel files are not allowed.
This function just draws the element out of the set. The need is
to ensure that the parameters of the right type are fed into dominates}

function has..ghost(call:sendmessage;TABLE:ghostmap): boolean
begin

exit (assume result
Ccall.level in domain(TABLE) and
call.sender in domainCTABLE~call.level)) and
call.invoke.object in domain(TABI.E(call-level) Ccall.sender)))

end;

function map-.onto-ghost(call:sendmessage;TABLE:ghostmap) :object
begin

ext(assume result
if call.level in domainCTABLE) and

calsender in domain(TABLE~call-level)) and
call. invoke, object in domain (TABLE~call. level) (call. sender))

then TABLE(call. level) Ccall-sender) (call.invoke.object)
else call.invoke.object
fi);

end;

function fill..call(call:sendmessage;op:abt-op;
thisproc:uid;thishost:uid) :sendmessage

(note CopyODB copies from objpar to objparl}
begin

exit (assume result
call with (.control :- Invokeop;

sender :=thisproc;
.xnvoke Ucall.invoke with

(.operation :- op;
object :- thishost;
.param :- call.invoke.param;
.abjparl :- call.reply.objpar)))

end;

function fill-call-temp(call:endmessage;op:abt-op;objectl:object;
thisproc:uid;thishost:uid) :sendmeusage

(note CopyODB copies from objpar to objparl}

290 APPENDIX A. THE GYPSY SPECIFICATIONS

begin
exit (assume result -
call with (.control :- Invokep;

.sender - thisproc;

.invoke : call.invoke with
(.operation :- op;
.object :- thishost;

.objpar :- objectl;
.param :- call.invoke.param;
.objparl :- call.reply.objpar)));

end;

function fill-reply(call:sendmessage;thisproc:uid;thishost:uid;datal:data;
flag:boolean;code:abtmessages):sendmessage -

begin
exit (assume result =

call with (.control :- ReplyOp;
.sender :- thisproc;

.receiver :- call.sender;

.senderhost := thishost;
.reply :- call.reply with

(.error :- flag;

.errcode :- code;

.param :- datal)));

end;

end; {sdos scope for functions}

A.4.2 Main Procedure

scope udos
begin

procedure file.manager(thishost uid;

A.4. THE FILE MANAGER SPECIFICATION 291

thisproc : uid;

var port procbuf <input>;
var kport : procbuf <output>) =

begin

{EXPLAIATION OF KEY VARIABLES

OPEIUFOR table indexed by client and object, to store the current mode of
access.

OPENIAT : table indexed by client and object to store the current level of
access.

ghost-table : table index by level, client and object to store the uid of
the ghost object.

pending-ops : calls queued when making invocations on the kernel (replies to
which need further processing) so as to be able to match replies with
invocations.

}
{fUote: at any particular level, there is only one channel per client per
object.}

var call, reply, oldcall, tmpcall, host-call sendmessage;

var i: integer;

var pendingops: eventarray;

var OPENiAT: access-level-table;
var GhostTable: ghostmap;
var OPENFOR: accessmode.table;

const DD:data :- null(data);

loop

if call.control - InvokeOp

then
{mapping the actual object to ghost object is necessary because:

read accesses are handled by creating ghosts. Therefore, if

a particular access already has a ghost, then we must deal

w. th the ghost object instead of the true object
Note: if no ghost exists for that access, then map.onto-ghost

will return the actual object uid}

292 APPENDIX A. TFIE GYPSY SPECIFICATIONS

tmpcall :- call;
tmpcall.invoke.object :- mapontoghost(call.GhostTable);

case call.invoke.operation

is Openf ile:

(does the client have the object already open?
If so return error}

if already-.open(tmpcall.OPENAT) or already-open(call,OPENAT)
then

reply := fill-reply(callthisproc.thishost,DD,trueAlreadyOpen);
send reply to kport;

(is another client writing to the same object?
(readwrite will be considered same as write)
If so return error}

elif write-locked.byanother(call,OPENAT) and
(modeparam(call.invoke.param) - write or

modeparam(call.invoke.param) - ReadWrite)
then

reply :
fill-reply(callthisprocthishost,DD,true,InUse);

send reply to kport;

(file is free, so commence check for legitimacy of request
before granting access}

else
host-call :- fill-call(call.ReadSDBEntry.thisproc.thishost);
pending.ops(call.level) :- pending.ops(call.level) <: call;
send host-call to kport;

end; (if already-open}

is ReadFile:

{if the client has the object open in read or readwrite mode then
invoke the necessary operation on the ODB
else Error - note if object was opened for read then we
would be dealing with the ghost, otherwise we would be dealing
with the actual object.}

A.4. THE FILE MANAGER SPECIFICATION 293

if not has.access(tmpcall, OPENFOR) or
not already-open(tmpcall.OPEIIAT)

then
reply :- fill.reply(call,thisprocthishost.DDtrueNotOpen);
send reply to kport;

else

host-call :- fill-call-temp(call.map.ontoghost(call,

GHOSTTABLE),ReadODBEntry.thisprocthishost);

pendin-ops(call.level) :-

pendingops(call.level) <: call;
send host-call to kport;

end; (if not has-access}

is WriteFile:

(if the client has the object open in write or readwrite mode then
invoke the necessary action on the ODB
else Error - note in both cases we will be dealing with
the actual object.}

if not hasaccess(call, OPEUFOR) or

not already-open(callOPENAT)
then

reply :- fillreply(call,thisprocthishost.DD.trueNotOpen);

send reply to kport;

else
host-call :- fill-call(call, riteODBEntry,thisprocthishost);
pending.ops(call.level) :=

pendingops(call.level) <:call;

send host-call to kport;

end; (if not hasaccess}

is CloseFile:

(if there was no access to begin with the return Error.
Otherwise update the necessary data structures to

indicate that client no longer has the object open.
Also if the access had resulted in creating a ghost then
invoke a RemoveODBEntry operation on the ODB to delete

the ghostfile.}

if not has.access(tmpcall, OPENFOR) or
not alreadyopen(tmpcallOPENAT)

then

294 APPENDIA A. THE GYPSY SPECIFICATIONS

reply :- fill-.reply(call~thisproc,thishostDD,truetJotopen),
send reply to kport;

else
purge-.OPEUIFDR(tmpcall, OPEIIFOR);
purge_..PE1TAT(tmpcll . PE11AT);
purge-.GT(tmpcall .GhostTable);

end; (if not has-access)

if tinpcall. invoke-object no call. invoke .obj oct
then

host-.call :- fill-call-temp (call, nap.onto..ghost (call.
GHOSTTABLE) ,RemoveODBEntry .thisproc, thishost);

periding-.ops (call. level) :- pending-.ops (call, level) <: call;
send host-.call to kport;

end;

is CreateFile:

{pass on the request to the ODB as a CreateaDBEntry invocation.
If that succeds then this invocation will.}

host-.call:- fill-call(call.,CreateaDBEntry,thisproc .thishost);
pending-.ops~call .level) :- pending.ops (call. level) <:call;
send host-.call to kport;

is DeleteFile:

{pass on the request to the ODB as a RemoveDDEntry invocation.
If that succeds then this invocation will.

Anybody using the object will be bumped off and so the
data structures that reflect acceass to objects will
be updated on successful return from the ODB}

host-.call:- fill-.call(call ,RemovebDBEntry ,thisproc ,thishost);
pending.ops(call. level) :- pending-.ops (call .level) <:call;
send host-.call to kport;

else: {of case)

{since the invocation is not an operation supported by the
file-manager then return error}

reply :- fill-reply(call,thisproc~thishost.DD~true.Undefap);
send reply to kport;

A.4. THE FILE MANAGER SPECIFICATION 295

end; {case}

else {if call.control - ReplyOp}

(REPLIES FROM THE KERNEL -
in cases where an entry exists in pendin-ops for the reply, additional
action is taken, otherwise, the response is relayed to the client}

i :- 0;

loop

(have we walked through pending-ops?}

if isizepending-.ops~call.level)) then leave;

(is the reply from the kernel in response to the
current element in pending.ops}

elif call.level - pending-ops(call.level)(i).level and

call.transaclbl - pending-ops(call.level)(i).transaclbl

then

oldcall :- pending-ops(call.level)(i);

pending-ops(call.level) :-
pending.ops(call.level) with (seqomit(i));

(additional action can be avoided if the reply from
the kernel is an error}

if not call.reply.error
then

case oldcall.invoke.operation

is OpenFile:

(this must be in reply to the ReadSDBEntry invoked

by the file-manger to check the level of the
object.}

(if the level of the invoke - level of the object and
the request is to write or readwrite then grant the

296 APPENDIX A. THE GYPSY SPECIFICATIONS

request and update necessary data structures to
reflect the client's access to the object}

(the additional check as whether another client is
accessing the file in write/readwrite mode is to
close the crack on cases where seperate write

requests come in and are being considered because
neither request has succeeded yet. In other words, if
the check is not made, it is possible that two
clients could end up with write access to the same

file. Even if that happened, it would be no security

violation}

if unset(call.reply.objlbl) = oldcall.level and
(modeparam(oldcall.invoke.param) = write or

mode-param(oldcall.invoke.param) = ReadWrite) and
not write.locked.byanother(oldcall , OPEIIAT)

then
updateOPEIIFOR(oldcall, OPENFOR);

updateOPEUIAT(oldcall, OPENAT);

reply :- fill-reply(oldcall.thisprocthishost,

DD,false, 1oMesg);
send reply to kport;

{if the level of the invoke dominates the level of
the object and the request is to read then

invoke a CreateODBEntry operation on the ODB to

create a ghost file}

elif (dominates (oldcall. level,

unset (call. reply .obj lbl)) and
modeparam(oldcall.invoke.param) - read)

then
host-call :-

fill-call (oldcall, CreateODBEntry, thisproc,

thishost);
pending.ops(oldcall. level) :-

pendingops (oldcall. level)<: oldcall

with (.invoke.operation :- marker2);
send host-call to kport;

else

reply :- fill-reply(oldcall,thisproc,thishost,

DD, true, NoPermission);
send reply to kport;

end;

is marker2:

A.4. THE FILE MANAGER SPECIFICATION 297

(now that the ghost file has been successfully created,
copy contents of actual object onto the ghostfile}

host-call :
fill-call(oldcall.CopyODBEntrythisproc,thishost);

pending.ops(oldcall.level) :=

pending-ops(oldcall.level)<:oldcall with
(.Cinvoke.operation :- markerl);

send host-call to kport;

is markerl:
(since the ghost is now a mirror of the acutal object

grant the open to read request and update data
structures to map actual to ghost and to reflect
client's access to the object}

updateOPENFOR(oldcall, OPENFOR);
update-OPEUAT(oldcall, OPENAT);
updateGT(oldcall,GhostTable);
reply :- fill-reply(oldcall,thisprocthishost,

DD,false,11oMesg);

send reply to kport;

is DeleteFile:

(since RemoveODBEntry was successful, no client can
have access to the file, therefore, update the
relevant data structures}

purgeOPEFOR(call, OPETIFOR);
purgeOPENAT(call, OPENAT);
purgeT(call,GhostTable);
reply := fill-reply(oldcall,thisprocthishost,

DD,false,NaMesg);
send reply to kport;

else: (case}

(no special action needs to be taken. Just relay
the response from the kernel to the client}

reply := fill-reply(oldcall,thisproc.thishost,

call.reply.param.call.reply.error,call.reply.errcode);
send reply to kport;

end; (case}

leave;

298 APPENDIX A. THE GYPSY SPECIFICATIONS

else (if not call.reply.error}

(since the reply from the kernel was an error - relay
the error to the client}

reply :- fill-reply(oldcallthisproc,thishost,DD,
call.reply.errorcall.reply.errcode);

send reply to kport;

leave;

end; (if not call.reply.error}

else fif i...}
1 :- i + 1

end;{if i > size(pending-ops)}

end; {loop}

end; (if InvokeOp}

end; (outermost loop}

end; {file.manager}

end; {sdos scope}

A.5. THE CATALOG MANAGER SPECIFICATION 299

A.5 The Catalog Manager Specification

A.5.1 Local Function, Procedure and Type Declarations

scope sdos - { extending scope ados }
begin

(The catalog manager.
Types relating to the catalog are declared first, followed by various

functions auxiliary to the catalog manager, followed by the procedures

which define the operations on directories. }

{ The abstract type of directories,
i.e., of objects managed by the catalog manager. }

const DirectoryType : abst-type :- pending;

{ The specific abstract operations defined by the catalog manager. }
const Lookup : abst-op :- pending;
const CreateAlias abst-op : pending;
const RemoveAlias : abst-op :- pending;

const CreateDirectory abst-op := pending;

const RemoveDirectory abst-op := pending;

const ReplicateDirectory : abst-op :- pending;

const DereplicateDirectory : abstop :f pending;

(The components of data stored in each directory. I

type identifier = pending; (symbolic name identifiers}
typf path - sequence of identifier; (directory path}

type alias-list - mapping from identifier to uid; (collection of aliases}
type directory = icord(replica: boolean; {whether replicated}

primary: uid; (primary catmgr}
list: alias-list); (uids of subdirs and objects}

(Relations between pending operations, indexed by transaction number.
A variable of type 'pending-state' will be declared for each transaction
in progress.)

type pending-state = record(orig: sendmessage; { original request }
curt: sendmessage; (current secondary req I
replica: boolean; (is object replicated ? }
primary: uid; o abject's primary catmgr }
waiting: boolean; { transaction blocked ? I
count: integer); { number of responses from

catmgr replicas }
type pending.list - mapping from transacno to pendingbtate;

{ The list of catalog managers running on other hosts,
and their associated host uids.

These lists are specified as static, but in general, operations

could be provided to modify them when catalog manager replicas

are created or destroyed. }

300 APPENDIX A. THE GYPSY SPECIFICATIONS

coast catmgr.replicas : uidseq := pending;
conast catmgr.hosts : uidseq :- pending;
lemma catmgr.locate(i: integer) -

(size(catmgr-replicas) - size(catmgrhosts) and
i le size(catmgrhosts) -> catmgrhosts [i] uidhost(catmgrreplicas(il));

{ The three types of multicasts to other hosts }
type sendmode - (every, notlocal, single);

--- }
{ Catalog Manager functions }

{ function to recognize any defined catalog manager operation. }

function is-..atmgrop(sm: sendmessage) boolean -
begin

exit (assume result
(am. invoke.operation Lookup or
sm.invoke.operation CreateAlias or
sm.invoke.operation RemoveAlias or
sm.invoke.operation - CreateDirectory or

sm.invoke.operation RemoveDirectory or
sm.invoke.operation ReplicateDirectory or
sm.invoke.operation DereplicateDirectory));

end; (iscatmgr.op }

{ function to generate a secondary invocation on a kernel,
stemming from an original invocation on the catalog.
The object of the secondary operation is a host, and the object of
the original catalog invocation becomes a parameter in '.objpar'.

function kernel-request(sm: sendmessage; hostuid: uid; op: abst-op)
sendmessage -

begin
exit (assume (result.invoke.object = hostuid and

result.invoke.operation - op and
result.invoke.objpar - sm.invoke.object and
result.level - sm.level));

end; { kernel-request }

{ function to determine whether a directory is locked by its primary
catalog manager because a distributed update is in progress.
'is-locked' will be true if the local catmgr has already begun servicing
some transaction on this object 'obj', and after reading the local ODB
has found that 'obj' is replicated, that the primary manager for 'obj'
is itself, and that the operation in progress is not a Lookup.
It will mark this transaction as possessing the lock by making
.waiting - false. }

A.5. THE CATALOG MANAGER SPECIFICATION 301

function is.locked(obj: object; pending-ops: pending-list; myuid: uid)

boolean =

begin

exit (assume (result =

some trno: transacno,

trno in domain(pendingops) and
pendingope(trno).orig.invoke.object - obj and

pending.ops(trno).orig.invoke.operation ne Lookup and
pending.ops(trno).replica and

pendingops(trno).primary = myuid and
not pendingops(trno).waiting));

end; (locked I

{ function to determine whether any transactions in 'pending.ops' are

waiting for object 'obj' to be unlocked I

function is-waiting(obj: object; pendingops: pending-list) : boolean =

begin

exit (assume (result-
some trno: transacno,

trno in domain(pending-ops) and
pending.ops(trno).orig.invoke.object - obj and
pending-ops(trno).waiting));

end;

function to return the transaction number of a waiting transaction,

assuming one exists)

function find.waiting(obj: object; pending-ops: pending-list) : transacno =

begin

entry iswaiting(obj, pending.ops);
exit (assume (result in domain(pendingops) and

pending-ops(result).orig.invoke.object = obj and

pending.ops(result).waiting));

end;

f function to return the effective level of a transaction number.
Making transaction numbers dependent on levels is necessary for

security in a deterministic specification. If transaction

numbers could be picked randomly from an infinite pool, then
indexing by security levels could be avoided.)

function transacno-level(trno: transacno) : level - pending;

(function to generate a new unique transaction number of a given level I

302 APPENDIX A. THE GYPSY SPECIFICATIONS

function generate-new-transacno(used: transacnoset;

lev: level) : transacno -

begin
exit (assume (not result in used and

transacno-level(result) - lev));

end;

{ function to unpack directory data }
function data.todirectory(d: data) : directory - pending;

{ function to pack directory data }
function directoryto.data(d: directory) : data - pending;

function to unpack directory path I

function data.to.path(d: data) : path - pending;

{ function to pack directory path I

function path.to.data(p: path) : data - pending;

{ function to unpack symbolic identifier }
function data.toidentifier(d: data) : identifier - pending;

{ function to pack symbolic identifier }
function identifierto.data(i: identifier) : data - pending;

This procedure handles replies to previous sends and invokes.
If the reply is an error, abort the transaction no matter what stage it has
reached. If the reply is for a previous SendOp, then the primary manager

for the object is reporting completion; its reply is then passed back

to the client.
Otherwise, the reply is for a previous InvokeOp, handled by some host.

If the invoke was a Read-, Create-, or RemoveODBEntry, then it was a

single (not mulitcast) invoke on the local host (these invokes are never
multicast by the catalog manager). ReadODB is handled separately;

Create- and RemoveODB are intermediate operations from Create- and

RemoveDirectory, and they proceed to invoke ModifyODB.

A reply to any other invoke is the last step in processing of its
transaction. If the directory is not replicated, the reply is passed

back to the client. Otherwise, the local manager is the primary manager

for this object and will wait for successful replies from every catalog
manager host before replying to the client. If not every catmgr host

replies successfully, then the reply to the client will report failure

and future messages from other catmgr hosts will be ignored.

A.5. THE CATALOG MANAGER SPECIFICATION 303

procedure reply-.handlerC rcv: sendmessage;
var and: sendmessage;
var out: boolean;
var multicast: sendmode;

inyuid: uid;
var pending.ops: pending-.list)-

begin
var tratate: pending-.state;
var origmesg, currmesg: sendmessage;
var dir: directory;
var ident: identifier;

tratate :pending..ops(rcv.transaclbl);

originesg :=tratate.orig;
currmeag :tretate.curr;
and :origmeag, default message I
out :=true; {default value I
multicast :- single; default value I

if rcv. reply. error
then {abort transaction I

snd.control :- Reply~p;
snd.reply.error :- true;
remove pending-.ops~rcv.transaclbl);

elif rcv.sender in catmgr-.replicas
then {this is reply to a SendOp}

snd.control :- Reply~p; {or secondary InvokeOp on}
snd.reply :- rcv.reply; {a remote catalog mgr}
remove pending-.ops(rcv.transaclbl);

elif rcv.invoke.operation - ReadODflEntry {sender is local host}
then

read-.OD-handler~rcv, and, out, rnulticast, myuid, pending-.ops);

elif rcv.invoke.operation -CreateODBEntry or
rcv.invoke.operation - RemoveODBEntry (Create- or Remove-}

then {Directory in progress}
ident:

data-.toidentifier(origmesg.invoke.param); {unpack new ident}
and :- currmeag; {an invoke on host}
and. invoke, operation :-= ModifyOflBEntry;
and. invoke. objpar : - origmeog. invoke, object;

if rcv.invoke.operation -CreateODBEntry
then

new rcv.reply.objpar into dir.list~ident); {add alias}
snd.invoke.param :- directory-.to..data(dir); {pack modified dir}

else
remove dir.list~ident); {delete alias from dir}

304 APPENDIX A. THE GYPSY SPECIFICATIONS

and.invoke.param :- directoryto.data(dir); C pack modified dir }
end;

if tratate.replica
then

multicast : every; { multicast if necessary }
end;

trstate.cuzr := and;
pending.ope : pendingops with

(into (rcv.transaclbl) := tratate);

elif trstate.replica { reply to final tr invoke I
then (distributed update I

trstate.count :- trstate.count + 1;

if trstate.count = size(catmgr-replicas)
then { got last reply to multicast

and.control := ReplyOp;

and.reply :- rcv.reply;
remove pending-ops(rcv.transaclbl);

else
out :- false; C still waiting for more replies; no output I

end;

else { local update I
snd.control :- Replyap;
snd.reply := rcv.reply;

remove pending.ops(rcv.transaclbl);
end;

end; (reply-handler I

{ This procedure handles replies to previous "ReadODBEntry" invocations.

Each reply is non-error, and was sent from the local ODB.

Lookup transactions are passed on to the lookup-handler.

Otherwise, the information in the directory, including whether the directory

is replicated and the uid of its primary manager, is unpacked.
Every non-lookup transaction is either passed on to the primary manager,

or if the local manager is primary, handled in a manner appropriate
to each operation.)

procedure readODB-handler(rcv: sendmessage;
var and: sendmessage;

var out: boolean;

var multicast: sendmode;

myuid: uid;
var pendingops: pending-list) -

begin
var trstate: pending-state;

var origmeag, currmesg: sendmessage;

var dir: directory;

var ident: identifier;

var replicated, i.amprimary: boolean;

A.5. THE CATALOG MANAGER SPECIFICATION 305

tratate :=pending-.opsrcv.transaclbl);

origmeag :-trstate.orig;
currmesg :trotate.curr;
end :- origrnesg; {default message}

if origmesg.invoke.operation - Lookup
then

looktap-.handler~rcv, and, out, multicast, pending-.ops);

else
dir :- data..to.directory(rcv.reply.param); {unpack directory info}
trstate.replica :- dir.replica;
replicated :- dirreplica;
trstate.primary :- dir.primary;
x..am..primary :- (dir.primary - myuid) or

not replicated;

if is§Ilocked(origmesg. invoke, object. pending-.ops. myuid)
then {make this tr wait}

trstate.waiting :- true;
pending-cops :- pending-.ops with

(into rcv.transaclbl) :- tratate);

elif replicated and not L-am..primary
then {forward to primary mgr}

sxid.control :Sendap;

snd.receiver :dir.primary;
pending-.ops :-pending-.ops with

(into rcv.transaclbl) :=trstate);

else {not locked and either not}
{replicated or local is primary}

case origmeag. invoke operation
is CreateAlias:

ident :-

data..to-identifier~origmesg.invoke.param); f unpack new ident}
if ident in domain~dir.list)
then

snd.control :- Reply~p; {alias already exists}
snd.reply.error :- true; (error}

remove pending..op(rcv.transaclbl);
else

if replicated
then

multicast :- every; Cbroadcast I

e nd;
and :- currmesg;
and. invoke operation :- ModifyODEntry;

new origmeag.invoke.objpar into dir.list~ident); {add alias I

306 APPENDIX A. THE GYPSY SPECIFICATIONS

snd.invoke.param :- directory-.to..data(dir); (pack modif dir}
trstate.curr e nd;
pending-.ops :pending-.opa with

(into (rcv.transaclbl) :- tretate);
end;

is RemoveAlias:
ident :-

data-.toidentifier(origmesg.invoke.param); { unpack new ident}
if not ident in domain(dir.lint)
then

snd.control :- Reply~p; {alias doesnt exiit to be removed}
ond.reply.error :- true; {error Y
remove pending..opa(rcv.transaclbl);

else
if replicated
then

multicast :- every; {broadcast}
end;
and :- currmeag;
and, invoke .operation :-ModifyODBEntry;
remove dir.liat(ident); { delete alias from dir)
and.invoke.param :- directory-.to-.data(dir); (pack modif dir)
trstate.curr :and;
pending-.ops :-pending-.ops with

(into (rcv.transaclbl) :- trstate);
end;

is CreateDirectory:
ident :-

data..toidentifier(origmeag.invoke.param); { unpack new ident}
if ident in domain~dir.list)
then

snd.control :- Reply~p; { new dir identifier already}
snd.reply.error :- true; {exists in parent dir}
remove pending-.op(rcv.tranaaclbl);

else
and :- currmeag;
and. invoke operation : - CreateODHEntry;
and. invoke.objlbl :- origmesg.invoke.objlbl;
dir.list :- null(aliasjlist); {initialize}
dirreplica :-false; Cnew directory}
dir.primary :-myuid; {local catmgr is primary}
and. invoke. param :- directory.to-.data(dir);
trstate.curr :- and;
pending.ops :- pending-.ops with

(into (rcv.transaclbl) :- tratate);
end;

is RemoveDirectory:

A.5. THE CATALOG MANAGER SPECIFICATION 307

ident :
data..to.identifier(origmeg.invoke-param); (unpack new ident}

if not ident in domain~dir.list)
then

and.control :- Reply~p; {dir identifier doesn't}
snd.reply.error :- true; {exist to be removed}
remove pending-.opa(rcv.transaclbl);

else
and :- currmeog;
and. invoke, operation :- RemoveUDBEntry;
tratate.cuxr: and;
pending-.ops pending.ops with

(into (rcv.transaclbl) :- tratate);
end;

is ReplicateDirectory:
if dir.replica
then

and.control := Reply~p; {dir already replicated}
and.reply.orror :- true; {error}
remove pending-.ops(rcv.transaclbl);

else
multicast :- notlocal; {request of all other catmgr hosts}
and :- currmeag;
and. invoke, operation := ReplicateODBEntry;
and.invoke.pazam :- rcv.reply.param; {directory content}
tratate.curr e nd;
pending.opa pending.opa with

(into (rcv.transaclbl) :- tratate);
end;

is DereplicateDirectory:
if dir.replica
then

multicast :- notlocal; {request of all other catmgr hosts}
and :- currmesg;
and. invoke.operation :- DereplicateODBEntry;
trstate.curr e nd;
pending-.ops :pending-.opu with

(into (rcv.tranaaclbl) :tratate);
else

and.control UReplyop; {dir not replicated}
and.reply.error :- true; {error}
remove pending-.op~rcv.traneaclbl);

end;
end;

end;
end;

end; { read-.odb..handler I

308 APPENDIX A. THE GYPSY SPECIFICATIONS

{This procedure handles replies to ReadODB invocations
which result from lookups.
If the first identifier in the path cannot be translated, abort.
Otherwise, try to translate remaining path starting from subdirectory.}

procedure lookup..handler(rcv: sendmessage;
var and: sendinessage;
var out: boolean;
var multicast: sendmode;
var pending-.ops: pending-list)

begin
var tratate: pending-.state;
var origmeag. cuurmesg: sendmessage;
var dir: directory;
var alist: alias-.list;
var symbolic: path;

trstate :pending-.op(rv.transaclbl);
origmeag :tretate.orig;
currmesg :trstate.curr;

symbolic :-data-.to.path~origmesg.invoke.param);
f unpack path to be translated I

dir :- data..to-.directory(rcv.reply.paran); {unpack directory info}
alist :- dirlist;
if first (symbolic) in domain~alist)
then {found first identifier

if nonfirst(symbolic) - null~path)
then {translation complete

snd.control :- Reply~p;
snd.reply.objpar :- alist(first(symbolic)); {return uid I
remove pending-.ops~rcv.transaclbl);

else f lockup remaining path
snd.control :InvokeOp;
snd.invoke.object :=alist(first~symbolic)); f invoke on subdirI
ond.invoke.param:

path..to.data~nonfirst (symbolic)); Cremaining path
pending..ps :- pending-.ops with

(into (rcv-transaclbl) :-tratate);

end;
else {lockup failsI

ond.contrcl :- Reply~p;
ond.reply.errcr :- true;
remove pending-.ops(rcv.transaclbl);

end;
end; {lookup-.handler

end; {scope}

A.5. THE CATALOG MANAGER SPECIFICATION 309

A.5.2 Main Procedure

(Catalog Manager procedures }

scope sdos = { extending scope sdos

begin

The main procedure of the catalog manager.
Handles simultaneous, multi-level invocations of

catalog operations.

Its own uid and its host's uid are supplied as arguments.

Inbuf and outbuf are buffers shared with kernel.

Each input message, in 'rcvmesg', is examined in conjunction with
information in 'pending.ops', to decide values for 'out', which indicates
whether any message will be sent out in response, 'sndmesg', the message to

be sent, and 'multicast', which indicates whether the response message will
be destined for a single receiver, for each host running a replica of the

catalog manager, or for each host excepting the local one.

This processing of each input is performed by procedure 'handler'.

Once the input message has been given an appropriate response, the catalog
manager examines 'pending.ops' to determine if there is any transaction

whose progress has been blocked ('waiting') because its object has been

'locked', but which has just been unblocked during the handling of the

previous message. Each such transaction will be resumed from the point

at which it was suspended.}

procedure catalogmanager(hostuid: uid;
myuid: uid;

var inbuf: procbuf<input>;
var outbuf: procbuf<output>)

begin
var pendingops: pending-list; { relate pending catalog invocations

to nested invokes }
var used: transacnoset; { transaction numbers already used }
var rcvmesg, sndmesg: sendmessage;
var trstate: pending-state;

var trno: transacno;
var out: boolean; { whether current msg will get reply }
var multicast: sendmode; { whether reply will be multicast }

pendingops :- null(pendinglist);
used :- null(transacnoset);

loop

receive rcvmesg from inbuf; { get next input }

out := true; (default: will send reply }

310 APPENDIX A. THE GYPSY SPECIFICATIONS

multicast :- single; { default: no multicast }

handler(rcvmesg, sndmesg, out, multicast, { process new input meag }
hostuid, myuid, pendingops, used);

if out

then { send an output }
if multicast - single
then { send to single destination

send sndmesg to outbuf;
else { make output a multicast

multi.cast(sndmesg, myuid, outbuf, multicast);

end;
end;

loop C find blocked transac }
if iswaiting(rcvmesg.invoke.object, pending-ops) and

not islocked(rcvmeag.invoke.object, pendingops, myuid)

then

trno : - find-waiting(rcvmesg.invoke .object, pendingops);

rcvmesg :- pending-ops(trno) .orig;
out :- true;

multicast :- single;

re.init.transaction(rcvmesg, sndmesg, { restart transac }
out, multicast,
hostuid, myuid, pendingops, trno);

else leave;

end;

if out
then f send an output

if multicast - single
then { send to single destination }

send sndmesg to outbuf;

else { make output a multicast }
multiLcast(sndmesg, myuid, outbuf, multicast);

end;

end;

end; (loop }

end; { main loop }
end; { catmgr }

{ invoke an operation on all other ODBs local to active catalog managers,
with the exception of the local ODD if mode - notlocal. }

procedure multi.cast(sndzesg: sendmessage;

myuid: uid;
var outbuf: procbuf<output>;

A.5. THE CATALOG MANAGER SPECIFICATION 311

mode: sendmode) =

begin

var end: sendmessage :- sndmesg;
var i: integer :- 1;
loop

if i gt size(catmgrhosts) then leave; end;
snd.invoke.object :- catmgrhosts[i];
if (mode - every or snd.invoke.object ne myuid)
then

send sndmesg to outbuf;

end;

i:i + 1
end;

end;

Requests of the catalog manager are initiated as 'invokes' or 'sends',
which are then identified by a unique transaction number until completed.
After receiving an invoke or send, the catalog manager first decides

whether the message refers to a new or already-existing transaction.

If new, it issues a new transaction number and requests information from
the ODB for the object directory.

If already-existing, it must take appropriate action, either performing

secondary operations on the ODB representations of directories, or
in the case of a replicated directory, sending IPC to its primary manager.
A primary manager for a replicated directory must synchronize concurrent
updates to the directory.

Other procedures which handle messages sent by this catalog manager may

issue 'replies'.

The processing of replies depends on the nature of the original invoke
or send as well as on the reply's content.
Procedure 'reply-handler' does this processing. }

procedure handler(rcvmesg: sendmessage;

var sndmesg: sendmessage;
var out: boolean;

var multicast: sendmode;

hostuid: uid;

myuid: uid;
var pending-ops: pending-list;
var used: transacnoset) =

begin
case rcvmesg.control

is InvokeOp: { got new invocation }

if is-catmgr-op(rcvmesg.invoke.operation) and
uidtype(rcvmesg.invoke.object) = DirectoryType

then { start new tranaction I

312 APPENDIX A. THE G YPSY SPECIFICATIONS

init..transaction(rcvmesg, aridmeag. out. multicast.
hostuid. myuid. pending-.ops, used);

else
sndmesg :- rcvmesg; {improper invoke: reply error}
sndmesg.control :- Reply~p;
sndmesg.reply.error :- true;

end;

is Reply~p: {got reply}

if rcvmesg.transaclbl in domain(pending-.ops) and
rcvmesg. level -pending-.ops~rcvmesg. transaclbl) .orig. level and
(rcvmesg.sender in catngr.replicas or
uidtype (rcvmesg. sender) - HostType)

then (reply to pending op}
reply..handler(rcvmesg. sndmesg, (from known source}

out, multicast, myuid, pending-.ops);
else

out :- false; {irrelevant reply: ignore}
end;

is Send~p: {got IPC}

if is..catmgr-.op~rcvinesg.invoke, operation) and
uidtype~rcvmesg.invoke.object) -DirectoryType and
rcvmeug.sender in catmgr-.replicas

then {start new transaction}
init.transaction~rcvmesg, sndmesg, out, multicast,

hostuid, myuid, pending-.ops, used);
else

out :- false; {improper IMC ignore}
end;

end; (case}
end; (handler}

{ This procedure initializes an entry in 'pending.ops' for a new transaction.}

procedure init..transaction(rcv : sendmessage;
var and: uendmessage;
var out: boolean;
var multicast: sendmode;

hostuid: uid;
myuid: uid;

var pending.ops: pending-list;
var used: transacnoset)

begin
var trno: transacuo;
var tratate: pending-.state;

A.5. THE CATALOG MANAGER SPECIFICATION 313

and :=kernel-request(rcv. hostuid, ReadaDBEntry);
trno :=generate-.new..transacno(used. rcv.level);
new trno into set used;

snd.transaclbl :- trno;
trstate.orig :-rcv;
trotate.curr :and;

tratate.replica :- false;
trotate.count :- 0;
if is-locked~rcv.invoke.object, pending-ops, myuid)
then

trstate.vzaiting :-true;

out :- false;
else

trstate.waiting :false;

end;
new tratate into pending-.ops(trno);

end; f init-.transact ion Y

{This procedure reinitializes an entry in 'pending-.ops'
for a transaction that was previously held waiting.
No new transaction number need be generated. Y

procedure re-.init-transactionC rcv :*endmessage;
var and: sendmessage;
var out: boolean;
var multicast: sendmode;

hostuid: uid;
myuid: uid;

var pending-ops: pending-.list;
trno: transarno)

begin
var tratate: pending-.state;

and :- kernel-request(rcv, hostuid. ReadflDBEntry);
snd.transaclbl :- trno;
trstate.orig :rcv;

trstate.curr sad;
tratatereplica :- false;
trstate.count :- 0;
if is-locked~rcv. invoke, object, pending.ops. myuid)
then

tratatewaiting :true;
out :- false;

else
trstate.waiting :false;

e nd;
new tratate into pending..ops(trno);

314 APPENDIX A. THE GYPSY SPECIFICATIONS

end; {re..init..transaction}

end; {scope I

A.6 Authentication

A.6.1 The Authentication Manager Specification

scope sdoe-

(authenti.cate uiodule}

begin

type passstr-peading; { type for password strings)
type passwordtabletype-pending; (all of the password-user information}

type state-(isop.login2,logout2.unknownreply);

type todotype-record (oldmess: sendmessage;
lasttrans transacno);

type todoseqtype-sequence of todotype;
coast readylevel:level :-pending;

type data-pending;
const nodata:data :-pending;
coast blaxikrec:invocation :-pending;
type Cldatatype - data;
conut noprivelege :Cldatatype :-pending;

coast Authenticat*As: abst-.op :- pending;
coast Logout: abut..op :- pending;
coast lievPassword: abst-.op :- pending;

procedure infologiza(tbodata:data; var user:principal;
vat realpassword: passstr) -pending;

(unpacks login information from message)

procedure Checkusersecurity(username :uid; password:passstr;
1ev: level; passwordtable passwordtabletype;

A. 6. AUTHENTICATION 315

Cldata: Cldatatype; userlevelisok :boolean) =pending;
{~*This procedure must be CORRECT
{**This procedure must not give out negative answers too rapidly. **

{Userlevelisok only if password,securitylevel is ok for this user.
If it is ok also return Cldata}

function extractClinfoCdata:data) :Cldatatype -pending;
freturns only that part of the Cldata needed for the kernel.}

function IsTip~prinicipal uid; mytips :tiplist) :boolean-pending;
(check if its from one of this authenticators tipa}

Function SetClpack~bindings:data; origsender:uid; discrlevel: level) :data-
pending;

(combine the data fields into one}

Function Logoutlevel~mess:data) :level'.pending;
(level of logout -- should be userlow I

function SendertoTrans(origsender:uid) :transacno-pending;
(convert senders id to as. as a transaction number, for matching response)

procedure SetClmessage(rar call:sendmessage;
me:uid; Op:abst-op; origsender:uid; -bindings:data;
lev:level; flag:boolean; discrlevel:level)-

begin
exit call.controlininvokeop and call.reply.param-nodata and call.levellev

and call. invoke. operation-op;

call.invoke:-call.invoke with(.operation:-op;
.param:-SetClpack(biridings~origsender.discrlevel); .flag:-false);

call. level: -1ev;
call .reply. param :-nodata;
call.control : iinvokeop;
call .transaclbl : SendertoTrans (origsender)

end;

procedure sendreply~var call:sendmessage; lev:level; okreply:boolean)

begin

exit call. control-eplyop and call. invoke .param-nodata and
call. reply. paraminnodata and call. level-lev and
call .reply. error-okreply and
call .invoke. operationcall . invoke, operation;

316 APPENDIX A. THE GYPSY SPECIFICATIONS

call. control: -replyop;
call. invoke. param: innodata;
call .reply. error: -okreply;
call .reply. param innodata;
call. level: -lev;

end;

procedure changepass(uuer :principal; password: data; lev:level;
var passwordtable:passwordtabletype; err:boolean) - pending;

(Change the password f or user at 1ev security level. Might want to
modify this to allow some confirmation}

function purgetodo~todoseq: todoseqtype; 1: level) :todoseqtype
begin

exit result - if todoseq-null~todoseqtype) then
null Ctodoseqtype)

elif 1-last Ctodoseq) .oldmese-level then
purgetodo (nonlast Ctodoseq), 1)

else purgetodo~nonlast(todoseq).1) <: last(todoseq) fi
end;

lemma purgesimplify-
all l:level,all todoseq:todoseqtype~all count:integer,
count gt 0 and count le size(todoseq) and
todoseq~count) .oldmess.levell1 ->

purgetodoC todoseq with (seqomit (count]),l)-purgetodo(todoseq,l)

procedure getnextmess (var avzaitreply: state; call: sendmesuage;-
var savedcall:sendmessage; var todoseq:todoseqtype)-

begin

exit C(call-control-invokeop and awaitreply-isop)
or (call control ne invokeop and(awaitreply-uncnoumreply or

savedcall .level-call, level))) and
Cpurgetodo(todoseq .call.level)"purgetodo(todoseq,call.level));

{and the only todoseq changes are at the level of the call)

var count:integer;
var todo:todotype;

if call.control-invokeop then
awaitreply : isop

elif call.control-replyop then
awaitreply:-unknownreply; {assume error if not found)
count :iI;
loop

assert call control-replyop and

A.6. AUTHENTICATION 317

(purgetodo~todoseq' .cal l.level)-purgetodo~todoseq,call-level)) and
(awaitreply-unknownreply);

if count>size(todoseq) then leave end;
todo:-todoseq(count);
if call .transaclblintodo. lasttrans and call. levelutodo. oldmess. level

then
if call. invoke. operation-resetprocessbindings and

todo oldacas. invoke. operation-logout then
awaitreply : ilogout2

elif call. invoke. operation-setprocessbindings and
todo .oldmens .invoke. operation-authenticateas then

await reply: -loginL2
else (impossible case}

awaitreply:-unknowareply
end;
if awaitreply ne unknownreply then

savedcall :-todo. oldmess;
remove todoseq(count);
leave

end
else

count :icount+1
end

end
else {a sendop -- an invalid request)

awaitreply :-unknownreply
end
end;

procedure auth Cvar port:procbuf <input>; var kport:procbuf <output>;
me :hostname;
thepasswordtable :passwordtabletype; mytips :tiplist)=

begin

var todo:todotype;
var todoseq :todoseqtype;
var realpassword .password: passstr;
var isok,userflag~tiplevelisokuserlevelisokerr.init:boolean;
var awaitreply: state;
var count, i :integer;
var call. savedcall, incall .prfcall: sendmessage;
var Cldata:data;
var username :principal;
var pa. swordtable :passwordtabletype;
var t ipsecurityleveldata :data;

passwordtable: -thepasswordtable;

318 APPENDIX A. THE GYPSY SPECIFICATIONS

todoseq:-null(todoseqtype);

loop

{ Process next request }

receive call from port;
incall:-call; (for proof)
getnextmess(awaitreply, call, savedcall,todoseq);

{assertions to help theorem prover. Theorem about output
is at bottom of loop)

assert C(call.control-invokeop and avjaitreplya-isop)
or (call.control ne invokeop and

(awaitreply-unknownreply or savedcall. level-call. level)))
and Cincall .level-call. level);

case awaitreply
is isop:

{ * LOGIN part I

if call. invoke. operation-AuthenticateAs then
{convert message into proper parts)
infologin(call. invoke .param.uaername~password);,
(Check user for proper password and retrieve Cldata}
Checkusersecurity~username .password, call. level.passwordtable ,Cldata,

userlevelisok);
If userlevelisok and IsTip(call.sender,mytips) then

savedc all: -call;
(set up message to change CI bindingapl
SetClmessage (call .me ,SetProcessBindings ,savedcall. sender,

extractClinfoCdata) ,call.level,userflag~call.level);

send call to kport;
todo .lasttrans :call .transaclbl;
todo .oldmess:-call;
todoseq:-todoseq <: todo

else
(illegal login toss request)
sendreply(call~call. level,true);
send call to kport;

end

{ * LOGOUT part 1 s

elif call. invoke. operation-Logout then
savedc all: -call;
todo .oldmess :-call;

A. 6. A UTHENTICATION 319

(send out request to change CI status}
SetClmessage (call .me, ResetProcesflindings. savedcall. mender.

nopriveleg. .call. level.userflag,Logoutlevel(savedcall. invoke .param));
send call to kport;
todo. lasttrans:-call. transaclbl;
todoseq:-todoseq <: toda;

{ * CHANGE PASSWORD

elif call. invoke.operation-NewPassword then
ChangePass (call. sender,call. invoke. param *call, level.

passwordtable, err);
sendreply(call .call. level~err);
send call to kport;

{ * ILLEGAL REQUEST

else
{request is not of the right kind)'
sendreply(call .call.level, true).
send call to kport;

end;

'C * LOGIN part 2

is login2:
if call.reply.error then

{failure in setting discretionay access. This should not
occur. I

sendreply(savedcall. savedcall .level, true);
call: savedcall; (Cfor proof)'
send call to kport;

else
(login succesful .. tell user}
sendreply(savedcall. savedcall .level, false);
call:-savedcall; Cf or proof)
send call to kport;

end

'C * LOGOUT part 2

is logout2:
if call.reply.error then

(unable to reset priveleges. This case should not occur.
Let the user know logout failed.)'

sendreply(savedcall .savedcall.level, true);
call:-savedcall; (for proof)
send call to kport;

else
(logout succesful .. tell user}

320 APPENDIX A. THE GYPSY SPECIFICATIONS

sendreply(savedcall.call.levelfalse);

call:-savedcall; {for proof}
send call to kport;

end;

{ * ILLEGAL REQUEST * }

else: {it is an unknown reply, or impossible state for

awaitreply. this shouldn't occur}
(possibly do nothing or else the following:}

sendreply(call,call.level,true);

send call to kport;

end; (case}
assert ((call.controlreplyop and call.invoke.param-nodata and

call.reply.param-nodata) or

(call.control-sendop and call.invoke.param-nodata and
call.reply.param-nodata) or

(call.control-invokeop and

call.reply.param-nodata and
(call.invoke.operation-Setprocessbindings or

call.invoke.operation= Resetprocessbindings))) and

(incall.levelcall.level);

{ also show that the error field for replies is set correctly}
{ also show that a level 1 call only reads and writes level information

from the parameters todoseq and passwordtable}
end (outer loop}

end; {procedure}

end; (scope}

A.6.2 The Terminal Interface Process Specification

scope sdos-

(tip module}

begin

const readylevel:level :-pending; (below user levels}

type statetype=(active,logingin.logingout,ready);

type usermess-pending; (for sending and receiving to user}
type userbuf= buffer of usermess;

type lastlogintype - record(transaclbl:transacno; level:level);

A.6. AUTHENTICATION 321

(for global types see global types description)

procedure UserToSys Cucall :usermess; var call: sendmessage) -pending;
(transfoarm a usermessage into a system message}
{generate unique transaction number f or any login}

procedure SysToUser (call: sendmessage; var ucall :useriness) -pending;
(transfoarm a system message to a user message)

function fequestedLevel(ucall:usermess) :level-pending;
{Returnu the rquested login level)

function Islogout(ucall:usermess) :boolean -

begin

e:xit assume IsLogout(ucall) -> not Islogin(ucall);
ed;

function Islogia(ucall:usermess) :boolean -

begin
eit assume Islogia~ucall) -> not Islogout(ucall);

end;

function Isloginreply~incall: sendmessage; lastlogin: lastlogintype) :boolean-
begin
exit assume Isloginreply(incalllastlogin) -

incall .transaclbl-lastlogiL. transaclbl and
incall .level-lastlogin. level

and incall .sender-authmgr;
end;

function Islogoutreply (call: sendmessage) :boolean'mpending:

function IsLogin~k(call:sendmessage) :boolean-

begin
Result incall .reply. error-false;

end;

function Settransactionlbl :transacno-pending;
(Current proof is based on this just returning a random number.)

procedure tip~var port:procbuf <input>;
var kport:procbuf <output>;

322 APPENDIX A. THE GYPSY SPECIFICATIONS

var userport :userbuf<input>;
var userkport:userbuf <output>;
me: ho stname)-

begin

var incall ,outcall: sendmessage;
var ucall .pendingcall usermess;
var fromuser. senttauser, senttosys:boalean;
var state. prevatate: statetype;
var curlevel .prevcurlevel: level;
var lastlogin.prevlastlogin: lastlogintype;

state:-ready;
prevcurlevel :readylevel;
previastlagin: lastlogin;
curlevel :-readylevel;
prevstate:-ready;

s enttouser :-false;

senttosuys:fIalse;
fomuser :-false;

loop

assert

If prevatatemlogingout then
(if not fromuser and IsLogoutfteply~incall) then
state-ready

else
state-logingout fi)

elif prevatate-active then
(if fromuser and IsLogout(ucall) then
atatemlogingout

else
state-active fi)

slit prevstateinready then
Cit fromuser and Islogin~ucall) then

state-logingin
elif fromuser and Islogout(ucall) then

state-logingout
else

state-ready fi)
else (prevstate-logingin and

if not fromuser and IsLoginreply(incall.lastlogin) then
(if Isloginok(incall) then

state-mact ive
else

state-ready fi)
elif tromuser and Islogout(ucall) then

atate-logingout

A. 6. AUTHENTICATION 323

else
state-logingin fiD

fi

and (lastlogin no previastlogin-
Cprevstate-ready and state-logingin and
lastlogii. level-Requestedlevel (ucall) and
lastlogin. transaclbl- outcall -ti-ansacibi))

and
(state-ready->curlevelreadylevel) and

stateutlogingin -> curlevel-sreadylevel) and
(stateuulogingout ->curlevelnreadylevel)

and
(Ccurlevel-prevcurlevel) or (state-active and prevatate-logingin) or

(state'logingout and prevstate-active))
and ((prevotate-logingin and state-active) ->curlevelmincall.level)

and C (state-logingin and prevotate-ready) -> outcall .control-invokeop
and outcall. invoke. operation-AuthenticateAs
and outcall .invoke. obj ect'.authmgr
and outcall. levelinlastlogin. level
and lastlogin. levelPRequestedlevel Cucall))

and (sentt auger if f (not fromuser and
.(Cprevetate-active and incall.level-curlevel)

or (prevatate-logingout and Islogoutreply~incall))
or (prevetate-logingin and Isloginreply(incall~lastlogin))))

and (senttosys if f (fromuser and
((prevstate-active and not Islogin~ucall))
or (prevstate..ready and Islogin(ucall))
or (Islogout~ucall)))))

and [set:state] sub (set: ready~logingin,logingout~activej;

{remove u1nneeded hypothesesis to help theorem prover}

as sert
C(curlevel-prevcurlevel) or (state-~active and prevotate-logingin) or

(state-logingout and prevatate-active))
and
(state-ready->curlevelureadylevel) and
C utate-logingin->curlevel-readylevel)

324 APPENDIX A. THE GYPSY SPECIFICATIONS

and Catate-logingout -> curlevel""readylevel) and
(set: state) sub (set: ready. logingin, logingout .active];

await
on receive incall from port then fromuser:-false;
on receive ucall from userport then fromuser:-true;

end;

prevcurlevel :-curlevel;
previastlogin: -last login;
prevstate: -state;
senttouser:-false;
senttosys:-false;

case state
is active:

if fromuser and not Islogin~ucall) then
if IsLogout(ucall) then

state :-logingout;
curlevel : readylevel

end;
UserToSys (ucall .outcall);
outcall .level: curlevel;
senttosys :-true;
send outcall to kport

elif not fromuser and incall.level-curlevel then
{possibly change to incall level <-curlevel}

SysToUser~incall .ucall);
senttouser :-true;
send ucall to userkport

end
is logingout:

if not fromuser and Islogoutreply~incall) then
SysToUser~incall ,ucall);
senttouser :-true;
send ucall to userlcport;
state: -ready;

elif fromuser and IsLogout(ucall) then
state :-Logingout;
UserToSys (ucall ,outcall);
curlevel : readylevel;
outc all .level: -readylevel;
sent tosys :-true;
send outcall to kport

end
is logingin:

if not fromuser and Isloginreply(incall~lastlogin) then
if IsLogin~k(incall) then

A. 6. AUTHENTICATION 325

state: -active;
curlevel: -incall . level;
SysToUser (incall~ucall);
seattouser :-true;
send ucall to userkport

else
state: -ready;
SysToUser~incall .ucall);
seuttouser :-true;
send ucall to userkport

end
elif fromuser and IsLogout~ucall) then

state: -Logingout;
UserToSys (ucall .outcall);
curlevel: readylevel;
outcall .level: -readylevel;
senttosys :-true;
send outcall to kport

end
is ready:

if fromuser and Islogin(ucall) then
state: logingin;
UserToSys (ucall ,outcall);

MWen UsertoSys is built. the following assignment can be included.
Include the assertion that it is done as the following:}

outcall:-outcall with C.level:-Requestedlevel(ucall);
* control: -invokeop;
* invoke :outcall .invoke with(operation:-AuthenticateAs;
* object :-authmgr));

outcall .transaclbl: -SetTransact ionlbl;
Last login. transaclbl : out call. transaclbl;
Lastlogin. level:-outcall.level;
senttosys :-true;
send outcall to kport

elif fromuser and IsLogout(ucall) then
state :-La gingout;
UserToSys Cucall,outcall);
outcall .level: readylevel;
senttosys :-true;
send outcall to kport

end
end; (case)

e:nd; (loop)
ed; (procedure)

end; {scope}

326 APPENDIX A. THE GYPSY SPECIFICATIONS

A.7 The Kernel Specification

The kernel specifications will be given as specification of the individual kernel components.

A.7.1 Local Function, Procedure and Type Declarations

scope sdos - {extending adoe scope)
begin

{ auxiliary functions used in kernel }

function dominates(l1,12:level) : boolean - pending;
{ return true if security label 11 dominates 12 1

function uidhost(id: uid) : uid -
begin

exit (assume uidtype(result) - HostType);
end;
{ return the uid of the host named in the host field of the uid I

function uidtype(id: uid) : abst.type - pending;
return the abstract type field of the uid I

function generic.object(at: abet-type) : uid
begin

exit (assume uidtype(result) - at);
end;
{ return the uid of the generic object of this type I

function type.object(id: uid) : uid =

begin
exit (assume result - generic.object(uidtype(id)));

end;
{ a shorthand for composition of the previous two functions Y

function procuid(pn: procname; table: procnamemap) : uid
begin

exit (assume pn in range(table) -> tableCresult) = pn);
end;
{ compute the inverse of a process table I

function hostuid(hn: hostname; table: hoetnamemap) : uid =
begin

exit (assume hn in range(table) -> table(result) =hn);
end;
{ compute the inverse of a host table }

function host-label(argl:uid; table:hostlblmap) : label
begin

A. 7. THE KERNEL SPECIFICATION 327

exit (assume argl in domain(table) -> result = table(argl));

end;

end; (scope kernel-scope for auxil}

A.7.2 The Message Switch Specification

scope sdos - { extending sdos scope I
begin

procedure messageswitch(thishost hostname;
var port hostbufarr;

var procport procbufarr;
var procreqport : rocbufarr) =

{ this procedure receives and routes messages both from
the rest of the network, and from local processes.

(messages can be invokes, sends or replies}

begin
var SDB: securitydb;

var 0DB: objectdb;

var ATL,AT: activemap;
var cache: hostnamemap;

var knl: hostlblmap;
var kn: hostnamemap; { locally-known map from host uid to name }
var PPT: procnamemap; (locally-known map from process uid to name }
var PT: proctableentry; (process bindings}
var pops: eventseq; local invocations not yet completed }
var mog, msgl: sendmessage;
var ent: SDBentry;

var proc: procname;

loop

await

on receive msg from port thishost] { got message from net I

then

case mag.control

328 APPENDIX A. THE GYPSY SPECIFICATIONS

is ReplyOp: {Reply to operation invoked by kernel}
if ka(msg.receiver) - thishost

then
{ it is a reply to an op invoked by this kernel }
{ that op has to be a locateuid since that is the
only operation soliciting a reply issued by the
kernel across the network.

All other ops are

issued by some other manager processes}
if msg.invoke.operation = LocateUid
then

Locator(msgATL, kn1, kn, thishost. cache, port);
(let the locator update the cache and send back info;

if the meg has the requried info}
if not msg.reply.error

then

do.pending$ops(msg, p.ops. port);
elif (mag.reply.errcode = DoesNotExist)

then
Reply(thishost,msg,knl.kn.PPTport.procport);

else (: ignore the reply because Locator has not
found the location yet or it is
duplicate information arriving from different
host}

end;

elif msg.invoke.operation - ReadSDBEntry
(must be replies to the SDB as part of

replicate operation}
then

SDBPROC(AT,SDB, msg,knlkn.thishostPPT.portprocport);

if not (msg.reply.errcode - Waiting)
then

Reply(thishost,msgknl,kn,PPT,port,procport);
else {: ignore the reply}
end;

elif msg.invoke.operation - ReadODBEntry

(must be replies to the ODB as part of

replicate operation}
then

ODBProc(AT,ODB,SDB,msgknl.kn.thishost,PPTportprocport);

if not (msg.reply.errcode - Waiting)

then
Reply(thishost,msgkni.kn.PPTport,procport);

else {: ignore the reply}
end;

end;

else

A. 7. THE KERNEL SPECIFICATION 329

{route the message to the destination process on this host}
fouteMsg(SDBAT~thishost,msg.knilcna,PPT,port~procport);

end-.

is Invoke~p:
Magi :- Msg;
msgl .invoke. objpar :- type-.object Cmsg. invoke, object);
msgl. invoke, operation :- ReadSDBEntry;
SDBPROCCAT.SDB, msgi~knl.lcn.thishost, PPT, port, procport);
msg.level :- msgl.level; (very important : resetting the

level of the invocation to
the reply from the SDB for
handling cases of up-operations}

if msgl.reply.error then {error: no such type locally I
msg.reply.error :- true;
Reply(thishost .msg, kni ,kn,PPT ,port ,procport);

else
Invoke~p-.ops,ATSDB,OD,msg.knl,kn.thishost,PPT.PT,port,

procport);
end;

is Send~p:
RouteMsgCSDB.AT~thishost,msg,knl,kn,PPT. port, procport);

end; {case}

on receive Meg from procreqport(procJ got message from local proc I
then {stamp client id by checking port

info with the process manager}

magi :- Meg;
msg . invoke. obj par : - transform (proc);
msgi. invoke, operation : - DetermineClientld;
proceusmanager(SDB,AT,msgl,PPT.PT, kni,kn~thishost,port,procport);

(stamping the client 's id}
msg.sender :- msgl.reply.objpar;

(verifying/rectifying the client's level}
magi :- Meg;
msgl. invoke, operation : - ReadSDBEntry;
msgi.invoke.objpar :- msg.sender;

SDBPROCCAT,SDB, msgi, kai, kni. thishost, PPT, port, proeport);

330 APPENDIX A. THE G YPSY SPECIFICATIONS

if not msgl.reply.error then
ent :- unpaclc(msg.reply.param);
if not ent.mls then Cstamp label if single-level}

msg. level : -ent. label;

(if mls entity then the level of the message must be in the
set of permissible levels..else error}

elif not msg.level in [ent.labell
then

msg.reply.error :- true;
mag .reply. errcode :- IncorrectLevel;
Reply(thishost~msg. knl.kn. PPT, port. procport);

end;

case msg.control

is Reply~p:
RouteMsgCSDB,AT.thishost,msg.kni~kn.PPT. port, procport);

is Send~p:
RouteMsg(SDB,AT.thishost,mg~knilcn,PPT, port, procport);

is Invoke~p:
msgi :- msg;
msgl .invoke, operation :- ReadSDBEntry;

SDBPROC(AT. SDB .msgl ,knl * 1,thishost .PPT .port ,procport);
if msgl .reply. error
then {error: no such object locally

hence need to Locate across net)
Locator(msg.ATL, kn1. kn, thishost. cache, port);

start-.Active-Table (mug, thishost ,ATL);
if msgi.reply.errc- (no information in local cache}
then

p..ops :- p..ops <: mug;
else

Invoke(p-.ops,AT.SDB, 0DB, mug, kni, kn.
thishost, PPT,PT,port~procport);

end;
else

Invoke(p-.ops.AT, SDB, ODB, mag, kni, kn.

thishost. PPT, PT,port. procport);
end;

end; {case}
else

msg.reply :- msgl.reply;
Reply~thishost, mug. lail, kn. PPT, port. procport);

end; {if}
end; (await)

end; {loop}

A. 7. THE KERNEL SPECIFICATION 331

end; (message switch}

procedure Invoke (var p-.ops: eventseq;
var AT: activemap;
var SDB: securitydb;
var ODD: objectdb;
var mug: sendmessage;

kni: hostiblmap;
ka: hoatnamemap;
thishost: hostname;

var PPT: procnamemap;
var PT: proctableentry;
var port: hostbufarr;
var procport: procbuf err)

{this procedure carries out an invoke once it has been
determined that the object type is defined locally.
a manager of the object's type is started, if necessary.
fill in any msg.reply fields appropriate, and reply if possible.}

begin
var ent: SD~entry;
var manager: uid;
var msgl~msg2: sendmessage;

if msg. operateup-.enabled
then

usgi :- msg;
msgi.reply.error :- false;
msgl.operateup..enabled :- false;
Reply~thishost~msgl, kn1, kn. PPT, port, procport);

end;

case uidtype(msg. invoke.object)
is HostType: {route to "host manager"}

if lai~msg. invoke. object) -thishost (Op invoked on kernel}
then

case mug. invoke .operation

is LocateUid:
magi :- mug;
msgi .invoke.operat ion :-= ReadSDBEntry;
SDBPROC(AT,SDB,msgl,knl.kn,thishost,PPT,port.procport);
if not msgl.reply.error
then

Reply(thishost,msg, kni. kn, PPT, port, procport);
end;

332 APPENDIX A. THE GYPSY SPECIFICATIONS

is CreateODBEntry. WriteODBEntry. ReadODBEntry, RemoveODBEntry,
ReplicateODBEntry ,DereplicateODBEntry. CopyODBEntry:

ODBProc CAT. ODB *SDE ,msg,knl ,kn~thishout ,PPT, port .procport);
if (msg.reply.errcode eq Waiting)
then

p..ops :- p.op. <: Meg;
else

Reply~thishost~mag, kn1, kn, PPT. port. procport);
end;

is CreateSDBEntry, ModifySDBEntry. ReadSDBEntry. RemoveSDBEntry,
ReplicateSDBEntry. DereplicateSDBEntry, Incrementteplicallo,
Decrementteplicalo:

SDBPROC CAT .SDB ,msg .1k1* ,thishost .PPT ,port .procport);
if (msg.reply.erreode eq Waiting)
then

p..ops :- p.ops <: mug;
else

Reply(thishost,msg. kni, kn. PPT, port, procport);
end;

else: (case)
msg.reply.error :- true;
msg.reply.errcode :- Invalid~p;
Reply(thishost~msg. kn1, kn, PPT. port, procport);

end;
else

{msg should not have come to this kernel ... so ignore)
end;.

is ProcessType: {route to process manager}

processmanager(SDE ,AT,msg .PPT, PT,kni .kn, thishost .port ,procport);
Reply(thishost,msg,kMl,kn.PPT,port.procport);

else: {route to manager outside kernel}
asgi :- msg;
msgl. invoke.objpar :- type-.object~msg.invoke.object);
msg . invoke, operation :- ReadSDBEntry;
SDBPROCCAT,SDB. magl, kn1, kn, thishost, PPT. port. procport);
if not magi.reply.error

(there should not be an error because there
has been an kernel check to determine

that the type is supported on this machine)

A.l. THE KERNEL SPECIFICATION 333

then
ent :- unpack(msg.reply.param);
if ent.mls and

ent activeingra ne null Clabeltable)

then {pick any active mgr}

manager :- mgrchoose(ent.active-mgrs);
else

if not ent.mls and
mug. level in range Cent .active..mgru)

then {some active mgr has this label}
manager :- mgruid(mag. level, ent. active-.mgrs);

else (start new mgr I

msg . invoke. obj par -ent. exe-.file;
msgl.invoke.objlbl U ing.level;
msgl.level :- mog.level;
mogi. invoke .operation :-= Create~roc;
processmanager(SDB,AT.msgi ,PPT.PT.kni .kn,

thishost ,port. procport);

if not mugi.reply.error
then
manager :- msgl.reply.objpar;
ent.active-.mgrs :- ent.active.mgrs

with (into (manager) :- msgi.invoke.objlbl);

msgl. .invoke .objpar :- type..object(msg. invoke. objpar);
msg . invoke, operation :-ModifySDBEntry;
SDBPROCCAT,. DB .msg. .k,,thishost .PPT,port .procport);

end;
end;.

end;
send mug to procport [PPT (manager)];

end;
end; {case}

end, (procedure)

procedure RouteMag(var SDB: securitydb;

var AT: activemap;
thisho at: hostname;

var mug: sendinessage;
kni: hostlblmap;
kn: hostuamemap;
PPT: procnamemap;

var port: hostbufarr;
var procport: procbufarr)

(route mug as a reply, with destination determined by 'client'.

client is remote if host uid field is foreign. I

334 APPENDIX A. THE GYPSY SPECIFICATIONS

begin
var magi: sendmessage;

if mag.receiver in domain(PPT)
then

meg1 .- Meg;
mogi.involce.obipar :- msg.receiver;
ag . invoice .operation :- ReadSDBEntry;
SDBPROC(AT,SDB. msgi. Ical. kcm. thishost. PPT. port, procport);

(route Meg to destination process}
msg.level :- msgl.1.ve1;
if equals(msgl .reply.obj ibi. mag. level)
then

es end msg to procport[PPT~msg.receiver)];

msg.reply.error :- true;
Reply(thishost ,msg~knl .lc,PPT .port ,procport);

end;
else

mag.reply.error :- true;
Reply(thishost ,msg~klcl.kz,PPT,port .procport);

end;
end; {procedure}

procedure Locator(var meg: sendmessage;
var ATL: activemap;

ical: hostlblmap;
1cm: hoetnamemap;
thishost: hoetname;

var cache: hostnamemap;
var port: hostbufarr)

begin
var msgi: bendmessage;

if mag.control - InvokeOp and
mag. invoice.obj par in domain (cache)

then
mag. invoiceobject :- cache(mag. invoke. objpar);
msg.reply.error :- false;

else
msg.invoke.operation :- LocateUid;
Broadcast(msg, thishost. lcnl. 1cm, port);
msg.reply.error :- true;

A. 7 THE KERNEL SPECIFICATION 335

msg.reply.errcode :- Waiting;
end;

if msg.control - ReplyOp

then
updateActiveTable(mug,thishost,ATL);
if msg.reply.error - false and
not 35g.invoke.objpar in domain(cach.)

{this handling of the cache harbours on the

assumption that clients do not migrate.}

then
cache :- cache with (into (msg.invoke.objpar) : msg.senderhost);

msg.reply.error := false;
elif not checksufficient(meg,thishost,ATL)
then

msg.reply.error :- true;
msg.reply.errcode :- Waiting;

else
msg.reply.error :- true;

msg.reply.errcode :- DoesNotExist;
end;

end;

end; {procedure)

procedure do.pending-ops(msg: sendmessage;
var p.ops: eventseq;
var port: hostbufarr)

{ complete any operation which is pending, waiting for the

location info contained in 'msg'. }

begin
var count: integer;
count :- size(p.ops);
loop

if count le 0 then leave; end;
if p.ope[count].invoke.object - meg.invoke.objpar

then
send p-ope[count] to port[msg.senderl;

if count ne size(p-ops)
then pope(count] := last(p.ops); end;

p.ops :- nonlast(pops); { remove op from list }
end;

end;
end;

336 APPENDIX A. THE GYPSY SPECIFICATIONS

procedure Reply(thishost: hostname;

var msg: sendmessage;

kni: hostlblmap;
kn: hostnamemap;

PPT: procnamemap;
var port: hostbufarr;
var procport: procbufarr) =

{route msg as a reply, with destination determined by 'client'.
client is remote if host uid field is foreign. }

begin
var msgl: sendmessage;

msg.control :- ReplyOp;

if not msg.operateupenabled

then

if msg.senderhost eq thishost {replying to a local process}

then

if msg.sender in domain(PPT)
then

msgi :- mug;
msgl.sender :- mug.receiver;

mogi.receiver :- msg.sender;

send msl to procport[PPT(msg.sender)];

end;
else {replying to another host)

msgi :- mug;
{check levels to see if reomote host can handle the message)

{under current scheme the level of the reply is the level of
the invoke, therefore check not mandatory)

if dominates(knl(msg.senderhost),msg.level)

then
msgl.senderhost :- thishost;

msgl.sender := msg.receiver;
msgl.receiver :- msg.sender;

send magi to port[kn(msg.senderhost)];
end;

end;
else {should not reply to client. .the kernel has already ack. that action

A. 7. THE KERNEL SPECIFICATION 337

is being initiated on the client's behalf}

end;

end; {procedure}

procedure Broadcast(var msg: sendmessage;

thishost: hostname;

knl: hostlblmap;
kn: hostnamemap;

var port: hostbufarr)

begin

{ invoke the operation on all other known hosts that can handle the requested

level of invocation}

var h: hostname;

h :- minhost;

loop
if h ne thishost and

h in range(kn)
then

msg.invoke.object :- hostuid(h, kn);

(determine the label of host h.... public information}

if dominates(meet (host-label(msg. invoke, object ,knl)) ,msg. level)

then
msg.invoke.object :- hostuid(h,kn);

mag.sender :- thishost;

msg.receiver :- h;

send meg to port[hJ;

end;

end;

if h - maxhost then leave; end;

h :- h + 1;
end; {loop}

end; (procedure}

end; (edos scope for message switch}

A.7.3 The Security Database Specification

scope ados - { extending sdos scope }

338 APPENDIX A. THE GYPSY SPECIFICATIONS

begin

f security database}

procedure SDBProc(var AT: activemap;
var SDB: securitydb;
var mug: seadmessage;

kni: hostibimap;

kn: houtnamemap;
thishost: houtname;

PPT: procnamemap;
var port: hostbufarr;
var procport: procbufarr)

begin
var magi: sendmessage;
var eat: sdbentry;
var tmplvl: level;

case msg.control

is Invoke~p:

case mug. invoke, operation

is CreateSDBEntry: (level of the object to be created dominates the
level of
the invoke. Also the generic object of the type
must be supplied in msg.invoke.objpar. Will return
the new uid in msg.reply.objpar}

tmplvl :- meet Cunpack(msg. invoke .param) .label);
if dominates (tmplvl .meg. level)
then

(must check to see that there is an entry for the generic object of
that type on the local SDB}

if msg.invoke.objpar in domain(SDB)
then

msg.reply.error :- false;
mag. invoke .objpar :-

generate-.unique-identifier (thishost,
type-.object(msg.invoke.objpar), SDD);

A. 7. THE KERNEL SPECIFICATION 339

msg.reply.objpar :- msg.invoke.objpar;
SOB :- SDB with (into Cmsg.invoke.objpar)

unpack(msg. invoke .param));
else

mag.reply.error :- true;
msg.reply.errcode :- NoPermission;

end;
else

mag.reply.error :- true;
msg.reply.errcode :- NoPermission;

end;

is ModifySDBEntry: {if operateup bit is set then
level of the object dominates level of the message
else level of object equals level of the message)

{also enforces the configuration policy that the system
manager and authentication manager are the only entities

that can successfully invoke this operation)

if not msg.operateup-.enabled
then

if msg.invoke.objpar in domain(SDB) and
equals(SDB (mug. invoke .objpar) .label .msg. level) and
msg.sender in (set: system-.manager, authmgr]

then
mag.reply.error :- false;
SDB :- SDB with (into (msg.invoke.objpar) :

unpack Cmsg. invoke .par am));
Broadcast Cmsg.thishost,knl. kn,port);

elif not msg.sender in (set: system-.manager, authmgr] and
dominates (msg. level, meet (SDB (msg. invoke .objpar) .label))

then
msg.reply.error :- true;
msg. reply. errcode :- NoPermission;

else
msg.reply.error :- true;
mug. reply. errcode :-= DoestlotExist;

end;

else (if operateup.enabled}
if msg.invoke.objpar in domain(SDB) and

dominates (meet (SDB(mug. invoke. objpar) .label). mag. level) and
msg. mender in (set: system-.manager, authmgr]

then
msg.reply.error :- false;
8DB :- 9DB with (into (mog.invoke.objpar)

unpack (mag. invoke, par am));
Broadcast (msg, thishost .knl, kai,port);
msg.level :- join(msg.levelSDB(msg.invoke.objpar) .label);

elif not msg mender in [set: system-.manager, authmgrj and

340 APPENDIX A. THE GYPSY SPECIFICATIONS

dominates (meg. level, meet (SDB (msg. invoke. .obj par) . label))
then

msg.reply.error :- true;
msg.reply.errcode :- NoPermission;
meg. level :- join (mg. -level. SDB (msg. invoke. obj par) . label);

else
msg.reply.error :- true;
msg.level :- sys..hi;
msg.reply.errcode :- DoesflotExist;

end;
end;

is feadSDBEntry:
(if operateup bit is set then
level of the message dominates the level of the object

else level of the message should equal the level of the object.}

if not mag.operateup.enabled
then

if msg.invoke.objpar in domainSDl) and
dominates(msg. level ,zeet (SDB(msg. invoke. objpar) .label))

then
msg.reply.error :- false;
msg.reply.objlbl:= SDB(msg.invoke.objpar) .label;
msg.reply.param UpackCSDB(msg. invoke. objpax));

ele
msg.reply.error :true;
mag. reply. errcode :-DoesNotExist;

end;
else (if operateup-.enabled}

if msg.invoke.objpar in domain-(SDB)
then

msg.reply.error :- false;
meg. reply. obj lbl:U SDB(msg. invoke. objpar) .label;
meg. reply. param :- packCSDB~msg. invoke. objpar));
msg.level :- join(msg-level,SDB(msg.invoke.objpar) .label):

* le
msg.reply.error :- true;
mug level :- Ssehi;

msg.reply.errcode :- DoesNot~xiet;
end;

end;

is LocateUid: (will determine exietance of the object and/or the
manager.

if the operateup switch is set then
level of the message dominates level of the object

else
level of the object equals level of the message.)

A. 7. THE KERNEL SPECIFICATION 341

if not msg.operateup-.enabled
then

if mog.invoke.objpar in domainSDl) and
dominateu(msg. level ,meet (SDB~mug. invoke. objpar). label)) and

can-.handle(SDB(type..abject~msg. invoke. objpar)) ,msg)
then

mog.reply.error :false;
mug.reply.param :code-.paramObjectand~anager);

elif mag.invoke.objpar in domain(SDB) and
dominates (mug. level ,meet CSDU(mug. invoke. objpar) .label))

then
msg.reply.error :=false;

msg.reply.param :=code-.param(Objectanly);
elif can-.handleCSDB~type-.object (mug. invoke .objpar)) ,msg)

then
msg.reply.error :- false;

mag.reply.param :- code-.param(Manageranly);
else

msg.reply.error :- true;
mug. reply. errcode :- Does~otExist;

end;

else (if operateup-.enabled}

if msg.invoke.objpar in domain(SDB) and
can..handle(SDB(type-.object (mug. invoke. objpar)) ,msg)

then
msg.reply.error :- false;
msg.level :- join~mug.levelSDB(msg.invoke.objpaz) .label);
msg.reply.param :- code-.param(Objectanlanager);

elif msg.invoke.objpar in domain(SDB)
then

mug.reply.error :- false;
mag.level :- join~msg.level,SDD (mug. invoke.objpar).label);
msg.reply.param :- code-.param~tbbjectOnly);

elif can..handleCSDfl~type-.object (mug. invoke. objpar)) ,mug)
then

msg.reply.error :- false;
mag. level :- join(msg.levelSDB~mg.invoke.objpar) .label);
mug. reply. param -code-.param(ManagerOnly);

else
msg.reply.error Utrue;

meg.level :- syu..hi;

mug. reply. errcode -- DoesflotExiut;
end;

end;

is RemoveSDBEntry: {if operateup switch is set then the level of the

342 APPENDIX A. THE GYPSY SPECIFICATIONS

object dominates the level of the call.
else

level of the object equals the level of the call}
(note this will result in removal of this
entry from all ODB's}

if not msg.operateup-.enabled
then

if msg.invoke.objpar in domain(SDB) and
equals(SDB(msg. invoke .objpar) .label .msg. level)

then
msg.reply.error :- false;
SDB :-SDB with (mapomit Cmsg.invoke.objpar));
msgl :Meg;
msgl .invoke .operation :- RemoveSDBEntry;
Broadcast(msgi,thishost,kal, kn.port);

elif (msg.invoke.objpar in domain(SDB)) and
dominates (meg. level. meetCSDB~msg. invoke .objpar) .label))

then
msg.reply.error :- true;
meg. reply. errcode :- NoPermission;

else
msg.reply.error :- true;
meg. reply. errcode :- Doesflotbcist;

end;
else (if operateup-.enabled}

if msg.invoke.objpar in domainCSDl) and
dominates(meet(SDB(meg. invoke. objpar) .label) .msg. level)

then
msg.reply.error :- false;
SDB :- SDB with (mapomit (meg. invoke. obj par));

elif (msg.invoke.objpar in domainCSDl)) and
dominates(msg. level ,meet (SDB~msg. invoke. objpar) .label))

then
msg.reply.error :- true;

meg. reply. errcode :- oPermission;
else

msg.reply.error :- true;
msg.level :- sys-.hi;
mag. reply. errcode :- DoesNotExist;

end;
end;

is feplicateSDflEntry: (level of the object must
equal the level of the request)

if not msg.invoke.objpar in domain(SDB)
(object does not exist locally)

then

A. 7. THE KERNEL SPECIFICATION 343

magi :- meg;
msgi. invoke, operation :- ReadSDBEntry;

Broadcast (msgl.,thishost, knl. kn,port);
msg.reply.errcode :- Waiting;

start-.Active-.Table(mg~thishost,AT); (make an entry to look

out f or replies to this broadcast}

elif msg.invoke.objpar in domainCSDB) and

dominates (meg. level ,meet (SDB(mug. invoke. objpar) .label))

then
msg.reply-error :- true;

mug. reply. errcode :- AlreadyExists;
else

msg.reply.error :- true;

msg. reply. errc ode :- DoesNotExist;
end;

is DefteplicateSDflErtry: (level of the object must equal
level of the request}

if msg.invoke.objpar in domainCSDB) and (object exists locally)

equalsCSDB~msg.invoke.objpar) .label,insg.level) and

SDB~mag.invoke.objpar) .replicas ge I

then
magi :- msg;
mag . invoke, operation :- DecrementReplicallo;
Broadcast(msglthishost~kl. kn,port);

msg.reply.error :- false;
elif (msg-invoke.objpar in domain(SDB)) and

dominatesifig. level ,meet CSDB~msg. invoke. objpar) .label))

then
msg.reply.error :- true;

mug. reply. errcode :- foPermiss ion;

else
msg.reply.error :- true;
mag. reply. errcode :-DoesllotExist;

end;

is IncrementReplicaNo:

if maginvokeparam in domainCSDl) and

equals Cent. label * meg. level)

then
ent :- unpack(mag.invoke.param);
ent.replicas :- ent.replicas + 1;

5DB :- SDB with (into (msg.invoke.param) :ent);

mug.reply.error :- false;
else

344 APPENDIX A. THE GYPSY SPECIFICATIONS

msg.reply.error :- true;
msg. reply. errcode :- oPermiss ion;

end;

is Decrementfteplicallo:

if msg.invoke.param in domain(SDB) and
equals Cent. label, mag. level)

then
ent :- unpack(msg.invoke.param);
ent.replicas :- ent.replicas - 1;
SDB :- SDB with (into (msg.invoke.param) :ent);

mog.reply.error :false;
else

msg.reply.error :true;
mag. reply. errc ode :- = oPerinission;

end;

else: (case)
msg.reply.error :- true;
msg.reply.errcode :- Invalid~p;

end; (case)

is Reply~p: (valid replies are from ReadSDBEntry operations
invoked as part of ReplicateSDBEntry request)

case mug. invoke, operation

is ReadSDBEntry:
(make an entry to reflect that a host
has replied to a particular broadcast msg}

update-Active-.Table ma,thishout,.AT);

if not msg.reply.error and
not mag.invoke.objpar in domain(SDB)

then
ent :- unpack(msg-reply-param);
if equals Cent .label ,msg. level)
then

msg.reply.error :- false;
msgi :- mag;
msgi .invoke, operation :- IncrementReplicatio;
Broadcast (msg , thishost *kn , kn ,port);
ent replicas :- ent.replicas + 1;
8DB :- 8DB with (into Cmsg.invoke.objpar) :- ent);

A. 7. THE KERNEL SPECIFICATION 345

elif dominates(msg.levelmeet(ent.label))

then

msg.reply.error :- true;
msg.reply.errcode :- NoPermission;

end;
elif not checksufficient(msg,thishostAT) (have all hosts

responded}

then

msg.reply.errcode := Waiting;

else

msg.reply.error :- true;
msg.reply.eircode :- DoesNotExist;

end;

else : (ignore the reply}

end; (case ReplyOP}

end; (case control}

end; (procedure}

end; (scope sdos for sdb }

A.7.4 The Object Database Specification

scope sdos - (extending sdos scope }

(note : The client has the option to set the operateup bit to
invoke actions on objects above his level. The ODB relies on

the SDB to supply the level of the object. In this process
of ReadSDBEntry, the level of the reply from the SDB may be
higher than the level of the request to the SDB, because the

operateup bit was set. The ODB then resets the level of the
request it got from the object-manager to this new level.
So when a reference is made to level of invoke in the documentation,

we mean the this new modified level.}

(note : .invoke.objpar has the uid of the object on which ODB and SDB ops

are to be carried out}

begin

(Object database }

procedure ODBProc(var AT: activemap;

346 APPENDIX A. THE GYPSY SPECIFICATTONS

var GOB: objectdb;
var SDB: securitydb;

var msg: sendmessage;

knl: hostlblmap;
kn: hostnamemap;

thiehost: hostname;

PPT: procnamemap;
var port: hostbufarr;

var procport: procbufarr) -

begin

var type-error, object-error: boolean;
var type-entry, object-entry: sdbentry;

var msgl: sendmessage;
var info: ODBobject;

var ent: SDBentry;

case msg.control

is InvokeOp:

msgl :- mug;
msgl.invoke.operation :- ReadSDBEntry;

msgl.invoke.objpar :- type.object(mag.invoke.objpar);

SDBProc(AT,SDB, msgi, kn1, kn, thishost, PPT, port, procport);

type-entry :- unpack(msgl.reply.param);

if msg.sender in domain(type.entry.activemgrs)

(is sender actually a manager for that type}

then
(check to see if the particular instance is
supported on the local host}

magi.invoke.objpar :- mag.invoke.objpar;

SDBProc(AT,SDB,msgl knl,kn,thishostPPT,port,procport);

object-error : msgl.reply.error;

object-entry : unpack(msgl.reply.param);
msg.level :- msgl.level; (very important ...the level of the

invoke is now being reset to the

level of the reply from ReadSDB
for up operations this will equal

the level of the object)

case msg.invoke.operation

is CreateODBEntry: (if client is a manager of the specified type, and
label of new object dominates level of invoke then
create a new object of the manager's type and

return its uid. }

if dominates(meet(mug.invoke.objlbl), msg.level)

A. 7. THE KERNEL SPECIFICATION 347

then
object-.entry :- initial (SDBentry);
object-.entry.label :- mag. invoke.objlbl;
magilevel :- msg.level;
msgi .invoke, operation :- CreateSDlEntry;
msgi .invoke. objpar :type-.object (mog. invoke.objpar);
mugi. invoke. param -pack Cobj ect-.entry);
SDBProc (AT,SDB, magi .1ni. kathishost ,PPT .port .procport);
if not msgi.reply.error
then

msg.reply :- msgi.reply;
ODB :- 0DB with Cinto (msg.reply.objpar) :

initial C0DBobject));
else

msg.reply :- msgl.reply;

el nd;

msg.reply.error :- true;
msg. reply. errc ode :-NoPermission;

end;

is Wi.riteODEntry:
{if client is a manager for the type of this object, and

level of object equals level of invoke deposit the data.)

if not object-.error
then

if equalsobject-.entry. label, msg. level)
then

msg.reply.error :- false;
ODB :- ODB with (into Cmsg.invoke.objpar)

mog. invoke.param);
else

msg.reply.error :- true;
msg. reply. erre ode :- NoPermission;

el nd;

mog.reply.error :- true;
msg .reply. errcode :- Does~otExist;

end;

is ReadODBEntry:
(if client is a manager for the type of this object, and

level of invoke dominates level of object, return the data.)

if not object-.error

348 APPENDIX A. THE GYPSY SPECIFICATIONS

then
msg.reply.error :false;
mag. reply .param UODB(msg. invoke .objpar);

else
msg.reply.error :true;
msg.reply.errcode :- DoesNotExist;

end;

is RemoveODHEntry:
(if client is a manager for the type of this object and level

of object equals level of the invoke, remove the object.)
Clote: this will remove all occuranceu}

if not object-.error
then

if equals Cobj ect..entry label * mag. level)
then

mag.reply.error :- false;
0DB D DB with (mapomit Cmsg.invoke.objpar));
magi :UMsg;

msgi .invoke .operation : - RemoveSDB~ntry;
SDBProc CAT,SDB ,msgi .1nl .k.thishost .PPT .port ,procport);
Broadcast(msgi~thishost.kni. kn.port);

msg . invoke .operation :- RemoveaOBzntry;
Broadcast (magi .thishost * 1l. kn.port);

else
msg.reply.error :- true;
msg. reply. errcode :- NoPermiss ion;

end;
else

msg.reply.error :- true;
msg.reply.errcode :- DoesflotExist;

end;

is CopyODflEntry: (client can copy object A to B if level of B
dominates level of A}

if not object-.error
then

Msgl :- Meg;
msgl. invoke.operation :- ReadSDflEntry;

msg . invoke .objpaz :- mug. invoke. objparl;
SDBProc (AT,SDB.msgl . InI kn~thishost ,PPT,port .procport);
ent :- unpack(msgl.reply.paran);

A. 7. THE KERNEL SPECIFICATION 349

if not mogi.reply.error and
type..object (mug. invoke.objpar)

type..object (mag. invoke. objparl)
then

msgi .invoke. objpar :- mug. invoke. objpari;
SDBProc(AT. SDB .msgl .kni ,kn,thishost .PPT .port .procport);
ent :=unpack (msgi .reply. param);

if mug. operateup.enabled
then

if dominates (meet Cent .label), mug. level)
then

ODB :- ODB with (into Cmsg.invoke.objpari):
0DB (mug. invoke. obj par));

msg.reply.error :- false;
mag.level :- join~msg.level~ent.label);

elsme
meg.reply.error :- true;
msg.reply.errcode :- NoPermission;
mag.level :- join(mag.level,ent.label);

end;
else (if msg.operateup-.enabled}

if equals(ent.label. msg.level)
then

ODB :- ODE with (into Cmsg.invoke.objpari)
ODB(msg. invoke .objpar));

msg.reply.error :- false;
elif dominates(meet~ent.label), msg.level)
then

mag.reply.error :- true;
mug. reply. errc ode :- oPermism ion;

else
msg.reply.error :- true;
mug. reply. errcode :- DoeallotExist;

end;
end;

else
msg.reply.error :- true;
mog. reply. errcode :- NoPermission;

el nd;

msg.reply.error :- true;
mug. reply. errcode :-DoesNotExist;

end;

is ReplicateODBEntry: {create a local copy of an object)
{level of the invoke must equal level of
the object)

350 APPENDIX A. THE GYPSY SPECIFICATIONS

if not object-.error
then

magi :- msg;
msg . invoiceoperation :-ReplicateSDlEntry;
SDBProc (AT, SDB ,msgl . li, kn. thishost .PPT .port .procport);
msg.reply :- msgi.reply;
if not msg.reply.error
then

msgi :- mag;
msg . invoke, operation :-ReadODBEntry;
Broadcast (agi , thisbost~ki .11.* .port);
msg.reply.errcode :- Waiting;

end-
else

mag.reply.error :- true;
msg. reply. errcode :-Does~otExist;

end;

is DefteplicateODBEntry:
{force a DeReplicateSDBEntry. .if that succeeds then

delete local ODEEntry. Else echo the error from
DeReplicateSDBEntry operat ion)

if not object-error
then

mugi :- msg;
msgi. invoice .operation :- DeReplicateSDBEntry;
SDBProc(AT,SDB, msgi,kni, ka~thishostPPT.port~procpart);
mag.reply :- msgi.reply;
it not msg.reply.error
then

0DB :- 0DB with (rapomit Cinfo));
end;

else
mag.reply.error :- true;
msg.reply-errcode :- DoesNotExist;

end;

end; {case}

else (if not sender in type-.managers)
mog.reply.error :- true;
msg.reply.errcode :- NoPermission;

end; (if)

A. 7. THE KERNEL SPECIFICATION 351

is ReplyOp: {valid replies are only for the Read0DBEntry operation
invoked as part of the Replicate0DBEntry operation}

case msg. invoke. operation

is ReadODBEntry:

{instead of maintaing elaborate queues of
requests sent and recieved, we have elected
to do a ReadSDBEntry operation again to
validate the operation of writing into the
obj ect)

if not msg.reply.error and uidtype(msg.sender) - HostType and
not msg.invoke.objpar in domain(ODB)

then
znsgl :- mug;
nisg . invoke, operation :- ReadSDBEntry;
SDBProc (AT.SDB ,msgi .1nl,kn~thishost ,PPT ,port .procport);
if not msgi.reply.error and

equals Cmsgi .reply.obj lbl .msgl. level)
then

info :msg.reply.param;
ODB :- DB with (into (msg.invoke.objpar) :- info);
msg.reply.error :false;

end;
else

msg.reply.errcode :Waiting; (informing message switch
that the Replicate Operation
is still not complete)

end;

end; {case under ReplyOp}

end; {case}

end; {procedure}

end; (scope sdos for odb}

352 APPENDIX A. THE GYPSY SPECIFICATIONS

A.7.5 The Process Manager Specification

scope udos = {extending ado. scope I

begin

procedure Process~anager(var 5DB: securitydb;
var AT: activemap;
var Mag: sendmessage;
var PPT: procnamemap;
var PT: proctableentry.

kn: hoatnamemap;
thishost : hoatname;

var port : hostbufarr;
var procport : procbufarr)

begin
var ent,entl: SDBentry;
var magi: sendmeasage;
var namel: procname;

case msg. invoke, operation

is CreatePray: (level at which process is to be created dominates the
level of the mug and the level of the file that
contains the process code.}

(the level of the new process is in .invoke.objlbl and
the uid of the file that contains process code is in
.invoke.objparl and the uid of the gereric object of
the type is in mog.invoke-objpar}

msgi :- Msg;
msgi .invoke, operation :-ReadSDBEntry;
msgl.invoke.objpar :- msg.invoke.objpari;
SDBProc(AT,SDB. mogi. kni. kn, thishost, PPT, port, procport);

{checking the level of the source file}
ent :- unpack(msgl.reply.param);

if not msgl.reply.error and
dominates (meet (mug. invoke .obj lbl) ,msg. level) and

dominates (meet (mug. invoke .obj lbl) ,ent. label)
then

msgi :- Meg;
magi. invoke, operation :- CreateSDBEntry;
ent.label :- msg.invoke.objlbl;
ent.mls :- false;

A. 7. THE KERNEL SPECIFICATION 353

msgl.invoke.param :- pack~ent);
SDBProcCATSDB, magi. kni, kn, thishost, PPT. port, procpart);
if not msgi.reply..rror
then

msg.invoke.objpar :- msgi.invoke.objpar; (get hold of the new
uid}

magi :- Meg;
msgi.level :- host.lo;
update-.PPT(add, msgi. PPT);

(make an entry into the process port table.
This information is Host-.lo}

if not msgl.reply.error
then

msgi :- Msg;
msg . level :- meet (mug. invoke. objlbl);
update-PT(add. mug, PT);

(make an entry about process bindings. This
information is at the level of the new

process }
end;

end;

elif (msgi.reply.error or
not dominates(meet(msg. invoke..objlbl) ,ent .label)) and

dominates (meet (mag. invoke. objlbl) .msg. level)
then

msg.reply.error :mfalse;

else
msg.reply-error :true;
msg.reply. errcode :- NoPermission;

end;

is RemoveProc: (level of the process dominates level of the msg}

mogi :-.msg;
msgi .invoke, operation :-= ReadSDBEntry;
SDBProc (AT, SDB, megi, kni, kn, thishost, PPT. port, procport);
ent :- unpack(msgi.reply.param);
msg.level :- msgi.level;

(important: reseting the level of the invoke
to the return from ReadSDB..good way of

handling operateupu}

if (not msgi.reply.error) and equala~entlabel, msg.level)
then

msg.reply.error :- false;
update-PPT (delete ,msg, PPT);
update-.PT(delete ,msg ,PT);

else
msg.reply.error :- true;

354 APPENDIX A. THE G YPSY SPECIFICATIONS

msg. reply. errcode : - DoesllotExist;
end;

is ShowProcesaBindings:

megi :- mug;
msg . invoke-operation :- ReadSDflEntry;
mug . invoke. objpar :- type..object(mug. invoke. objpaz);
SDBPrac(AT,SDB, msgl. kal, kn, thishost, PPT. port, procport);
enti unpack(msgl.reply.param);

mugi :Meg;
magl.. nvoke, operation :- ReadSDBEntry;
SDBProc(AT,SDB, msgi. kai, kn. thishost, PPT, port, procport);
ent := unpack(mogi.reply.param);

mog.level :- mugi.level; (important :reatting the level of the
invoke to the return from ReadSDH..
good way of handling operateups)

if (not msgl.reply.error) and equalu(ent.label. msg.level) and
mag. sender in domain(ent . active.-igro)

then
msg.reply.error :false;

else
msg.reply.error :true;
mug. reply. errcode :- DoesNtotExist;

end;

is SetProcessBindings: (System Manager and Authenication Manager can
set bindings. Level of the invoke has to be
dominated by the level of the object)

magi :- Mug;
msgi .invokeoperation :- ReadSDBEntry;
SDBProc(AT,SDB. magi, kn1. kn, thishost. PPT. port, procport);
entl :- unpack~msgl.reply.param);
if dominates(msg.level, meet(ent.label)) and

msg.sender in [set: authmgr. system-.manager]
then

update-.PT (add. mug, PT);
elif dominates(msg. level * meet Cent. label))
then

mag.reply.error :- true;
msg.reply.errcode :- NoPermission;

else
msg.reply.error :- true;
meg. reply. errcode : - DoesflotExist;

A. 7. THE KERNEL SPECIFICATION 355

end;

is ChangeActiveCCI: (client can change his own CCI}

if mag.sender - msg.invoke.objpar
then

update-.PT (add, nag ,PT)
else

mag.reply.error :- true;
mug.reply. errcode :- NoPermission;

end;

is DetermineClientld: (no security checks needed because this is
public info)

namel :- un-.transform(mg-invoke.objpar);
msg.reply. objpar :procuid~nanel ,PPT);
msg.reply.error Ufalse;

end; {case}
end; {procedure}

procedure update..PPT~op: abst.op;
var msg: sendmessage; var PPT:procnamemap)

{updatirxg the process-port-table . Since the port info is

host-lo the update has to be at host-lo}

begin
var temp: procname;

if msg.level - host-lo
then

msg.reply.error :- false;
if op - add
then

temp :=generate-.unique-.process.name(PPT);

PPT :-PPT with (into Cmsg.invoke.objpar) :temp);

elif op delete
then

PPT :PPT with (mapomit Cmsg.invoke.objpar));
end;

else
'nsg.reply.error :- true;
msg. reply. errcode :- NoPermission;

356 APPENDIX A. THE GYPSY SPECIFICATIONS

end;
end; {procedure}

procedure update..PT(op: &at.op; var msg:sendtessag.;
var PT: proctableentry) -pending;

end; (scope sdo. f or sdb)

A.8 The S stem Specification

scope sdos - (extending ado. scope)
begin

p -ocedure syatem(var host..exista :hostboolarr;
var user..exists:userboolarr)-

begin
var port : ostbufarr;
cobegin

each bn:hostname, host(hn, port);
each un:username, user~un);

end;
end; { system}

procedure host~thishost: hostname; var port: hostbufarr)
begin

var procport ,procreqport: procbufarr;
var userport, userreqport: procbufarr;
var table:procnamemap;
var tablel :passwordtabletype;
var localtips :tiplist;
cobegin

message-.switch(thishost, port, procport, procreqport);
catalog-.manager Cthishost ,table Cainproc) ,procport (minproc),

procreqport (minproc));
file..manager~thishost .table~minproc+2) .procport (minproc+2).

procreqport (minproc+2));
auth (procport. minproc+I) , procreqport Cminproc+ 1) ,table 1 thishost,

localtipa);
each pn :procname-3,

process (thishost .table(pn) .procport (pn), procreqport~pn));
each tp:tipname,

tip (procport (minproc+ 1) ,procreqport Cminproc+1) ,userport (tp).
userreqport~tp) ,thishost);

A.8. THE SYSTEM SPECIFICATION 357

end;
end; { host }

procedure process (thishost :hostname; thisproc :procname;
var inport:procbuf; iar outport:procbuf) - pending;

procedure user(thisuser: username) - pending;

end; { scope }

Appendix B

Transformed Specifications for

the File Manager

scope ados
begin

procedure file..manager(thishost uid;
thisproc uid;

var port prochuf <input>;
var kport :procbuf <output>;
var kport-.sh: procbuf <output>)

begin
var call, reply, oldcall, tmpcall, host-.call :sendmessage;
var i: integer;

var pending-.ops: eventarray;
var OPENAT: access.Jevel-.table;
var GhostTable: ghostmap;
var OPENFOR: access.mode-.table;

var call-s.h. reply-.sh, oldcall-sh. tmpcall-.sh. host-.call-sh sendmessage;
var pending-opes..h:eventarray;
var OPENAT-sh: acceuss.level.table;
var GhostTable-sh: ghoatmap;
var OPENFOR-sh: access-.mode-.table;

coat DD:.2tta :- null(data);

358

359

loop

assert (all call: sendmessage, dominates (1,call -level) -

[has..ghost (call ,QhootTable) if f has-.ghost (call, GhostTable-.sh) I and
[map..onto..ghout (call. GhostTable) -

map.onto-.ghamt (call. GhostTable-.sh)I and
(pending-.ops (call. level) - pending-.ops-..h(call. level)) and

[has-.access(call,OPENFOR) if f has-.access(call,OPEFOR-o.h) I and
Evzrite... ocke&..by-.another (call ,openat) if f
write.locked-.by-.another(call ,openat-.sh) J and

(already-.open(call ,OPEtIAT) if f already-.open(call ,OPENAT-.sh)]) and
Epurge (outto (kport .myid)) - purge(outto(kport.sh,myid))];

receive call from port;

if dominates(l, call. level)
then

call..sh :- call;

assert
dominates (1,call. level) and

Call call:sendznessage. dominates(l,call.level) -

[has-.ghost (call, GhostTable) iff has-ghost (call , GhostTable-.sh))I and
[map..onto..ghost (call ,GhostTable)
map-onto-ghost (call, GhostTable.sh)] and

[pending-ops (call. level) -pending-.ops...h(call. level)] and
[has- accessa(call, OPENFOR) iff has-.access (call, OPEJFOR-.sh) I1 and
(write-.locked..by-.another(call .openat) if f
vzrite-.locked..by-.another (call, penat-sh) I and

[already-.open(call.,OPE.'AT) if f already..open(call ,OPENAT-sh)J and
(call - callashi and

[purge(outto(kport,myid)) - purge(outto(kport-.sh,myid));

if call.control - InvokeOp
then

tmpcall :- call;
tmpcall invoke. object :- map-.onto-.ghost(call.GhostTable);
tmpcall-sh :- call-.sh;
tmpcall-sh.invoke.object :- map-.onto-.ghost(call-sh,GhoutTable-.sh);

case call. invoke, operation

360APPENDIX B. TRANSFORMED SPECIFICATIONS FOR THE FILE MANAGER

is Openfile:

assert
dominates (1, call, level) and

Call call:usendmessage, dominates (1 call. level) ->
[has-.ghost (call, GhostTable) if f has-.ghost (call. Ghost Table-.sh))I and
[map.onto-.ghost (call, GhostTable)
map-.onto-.ghost (call. GhoatTable-.sh) 2 and

[pending-.,ps (call. level) -pending.ops-.sh (call. level)] and
[has - acces call, OPElFOR) iff has-.access (call. OPENFOR-sh) I and
(write-.locked-.by..another (call , openat) 1ff
writ e- locked-by-.another (call. openat -.sh)]I and

[already.open(call .OPEIIAT) if f already-.open (call, OPENAT.sh) I) and
[call - call-.sh) and
Ctmpcall - tmpcall-sh] and
Etmpcall.level -call.levelJ and
[already-.open~call SQPEIIAT) if f already-.open (call, OPElAT-.sh)]I and
(a lready..open (tmpc all,. OPENAT) if f already-.open(tmpcall ,OPEIIAT-sh)I and

(piurge(outto(kport ,myid)) - purge Coutto(kport.sh~myid)) ;

if already..open(tmpcall .OPEIIAT) or already-.open(call ,OPENAT)
then

reply :-

f ill..reply (call. thisproc, thi shoat, DD, true, Already~pen);
send reply to kport;

reply..sh :-
fill-reply~call-.sh.thisproc,thishost,DD,trueAlready~pen);

send reply.sh to kport-.sh;

elif write-.locked-.by..another (call, OPEIIAT) and
(mode-.param~call.invoke.param) -write or

mode-.param (call. invoke .param) = ReadWrite)
then

reply :-

f ill-.reply cllthisproc, thishost, DD, true, InUse);
send reply to kport;

reply-.sh -
f ill-reply~callsoh, thisproc, thishost ,DD, true, InUse);

send reply.sh to kport-sh;

else
host-.call :- fill-call(call,ReadSDBEntry,thisprocthishost);
pending-.ops(call.level) :- pending..ope(call.level) <: call;
send host-.call to kport;

host.call..h :-
f i 1 1call (c all-..sh, ReadSDBEntry, thi sproc . thishost);

pending-ops..sh(call-sh.l1. .) : =
pending.ops..shcall-sh. level) <: call-sh;

361

send host.call-sh to kport-.sh;
end; (if already-.open)

is ReadFile:

assert
dominates~i. call. level) and

(all call:sendmessage, dominates(l,call. level) ->

[has..ghost (call, GhostTable) if f has..ghost (call. GhostTable.sh) J and
[map-.onto-.ghost (call . Ghost Table)
map.onto-.ghost Ccall ,GhostTable-sh) J and

[pending-.ops (call. level) pending-ops-.sh (call. level)) and
[has-.access (call. OPENFOR) if f hue-.access (call, OPEFOR-.sh) I] and
Ewrite-.locked-.by-.another(call .openat) if f
vzrite-.locked-.by-.another (call .openat..sh)] and

[already..open~call ,OPENAT) if f already-.open(call, aPEtlAT-.shYI) and
[call - call-.sh) and
[tmpcall - tmpcall-.shJ and
[tmpcall.level - call.level] and
[has-.access~tmpcall .OPEIIFOR) if f has-.access~tmpcall ,OPENIFOR-.sh)I and
(already-.open~tmpcall ,OPENAT) if f already-o.pen~tmpcall,.OPEIIATLoh)] and

[purge(outto(kport,myid)) - purgeouttolcport-.sh~myid))J;

if not has..access~tmpcall, OPENFOR) or
not already..open~tmpcall., PEIIAT)

then
reply :- fill-.reply~call,thisproc ,thishost.DD,trueNlotOpen);

send reply to kport;
reply..sh :-
fill-.reply(call-.sh,thiproc,thishostDD~true,lotOpen);

send reply-.sh to kport..sh;
else

host-.call:
fill.call (tmpcall, ReadODBEntry ,thisproc ,thishost);

pending-.ops (call. level) :-
pending-.ope~call.level) <: call;

send host-.call to kport;
host.call-sh :-

fill-call (tmpcall..h, ReadODBEntry, thisproc, thishost);
pending-ops-.sh~call-.sh. level) :-

pending-.opu...h(call...h.level) <: call-sh
send host-.call-sh to kport.sh;

end; (if not has-.access)

362APPENDIX B. TRANSFORMED SPECIFICATIONS FOR THE FILE MANAGER

is WriteFile:

assert
dominates (1.call .level) and

Call call:sendmessage, dominates(l.call.level) -

(has-.ghast (call. GhostTable) if f has-.ghost (call,.GhostTable-.sh)) and
[map-..nto-.gh2ost (call. GhostTable)
map-.onto..ghost (call. GhostTable.sh) J and

Epending.-opu (call. level) -pending.op..sh (call. level)) and
[has-.acces(call.OPENFOR) iff has-.accese(call,OPENFOR-o.h) I and
[write-.locked-.by.anather (call. openat) if f
write-occd-.by-.another (call. openat..h)] and

(already-.open(call , PENIAT) if f already..open(call,.OPENAT-..h)]) and
(call - call-.sh] and
(has..accesa (call ,OPENFOR) if f has-.access(call,. PENFOR.sh)) and
[already-.open(call ,OPENAT) if f already-.open(call. OPEIIAT-.sh)] and

Epurge(outto(kport~myid)) - purge(outto(kport...hmyid))];

if not has-.access~call, OPENFOR) or
not already-open(call ,OPENAT)

then
reply :- fill-.reply(call~thisproc~thishost,DD~true,UlotOpen);

send reply to kport;
reply..sh :-

fill-reply(call-uh.thisproc ,thishost ,DD *true, NotOpen);
send reply-.sh to kport..sh;

else
host-.call :- fill-.call(call,WriteODBEntry,thisproc~thishost);
pending-ops (call .level) : =

pending.ops(call.level) <: call;
send host-call to kport;
hout.call.sh :-

fill-call Ccall-sh. WriteOflBEntry ,thisproc ,thishost);
pending.ops-.sh(call-.sh. level) :-

pending-.ops.sh(call-sh. level) <: call-sh;
send host.call-sh to kport-.sh;

end; {if not has..access}

is CloseFile:

assert
dominates (1,call. level) and

Call call:sendmessage, dominates(l.call.level) ->

[has..ghost (call, GhostTable) if f has-.ghost (call, GhostTable-sh)J and
(map..onto-.ghost(callGhostTable) -
map..onto-.ghost (call, GhoutTable-.sh)] and

[pending..ops(call.level) - pending-.ops-.sh(cal'i.level)) and

363

[has-.access~call.OPENFOR) iff has-.access(callOPEIFR-.sh) I and
Ewrite-..ocked.by-.another (call .openat) if f
write.Aocked-.by-.another (call. openat..sh) J and

(already..open(call , PENAT) if f already..open (call. OPEIIAT.sh)]) and
[call - call-.sh] and
Ctmpcall - tmpcall-shl and
[tmpcall.level - call.level] and
[has-.accss(tmpcall .OPE1IFOR) if f has-accesu (tmpcall .OPRNIFOR-sh)I and
(already-.open~tmpcall .OPEUAT) if f already..open(tmpcall . PENAT-..h)] and

[purge~outto~kport,myid)) - purge(outto~kport-o.h,myid))];

if not has..access(tmpcall, OPENFOR) or
not aJlready-.open~tmpcall ,OPEIIAT)

then
reply :fill-.reply(call~thisproc.thishostDD,true,DIlotapen);

send reply to kport;
reply-.sh

fill-reply~callsoh~thisproc .thishost ,DD .true, UotOpen);
send reply-.sh to kport..sh;

else
purge-OPENFOR~tmpcall., PENFOR);
purge-.OPENAT~tmpcall .OPENAT);

purge-.GT~tnipcall ,GhostTable);
purge....PENFOR~tmpcall-sh .OPEUIFOR.sh);
purge-.OPENAT (tmpcall-sh. OPEIIAT-sh);

purge-.GT~tmpcallsoh, GhostTable.sh);
end; {if not has..access}

if tmpcall.invoke.object ne call.invoke-object
then

host-.call:
fill-call(tmpcall,RemoveODBEntry~thisproc ,thishost);

send host-.call to kport;
bost-.call-.sh :-

fill-call Ctmpcall-..h .RemoveODBEntry ,thisproc ,thishost);

send host-.call-sh to kport-.sh;
end;

is CreateFile:

host-.call:
fill-call (ca , CreateODBEntry. thisproc thishost);

pending-.ops~call.level) :- pending-.ops~call.level) <:call;
send host-.call to kport;

host-.call-.sh :-

fill-.call(call..shCreateODBEntry,thisproc ,thishost);

364APPENDIX B. TRANSFORMED SPECIFICATIONS FOR THE FILE MANAGER

pending.op..sh(call..h. level) :
pending-ops-o.h~call-.sh. level) <:call-sh;

send host-.call-sh to kport-.sh;

is DeleteFile:

host-.call:
fill-call (call. RemoveODEEntry ,thiuproc .thiahost);

pending-.ops(call .level) :- pending.ops (call. level) <:call;
send host-.call to kport;

host-.call-.sh :-
fill-call(call-ah,RemoveODBEntry. thisproc ,thishost);

pending.ops-.sh(callsoh. level) :

pending-.ops-..h~call-o.h. level) <:call..sh;
send host-.call-sh to kport-.sh;

else: (of case}
reply :- fill-reply(call~thisproc~thishost,DD~true.Undef~p);

send reply to kport;
reply.sh :-

fill-.reply(callsoh~thisproc~thishostDD~true,Undef~p);
send reply.sh to kport-.sh;

end; {case}

else {if call.control - Replyap}

(HANIDLING REPLIES FROM THE KERNEL -

in cases where an entry exists in pending..ops f or the reply, additional
action is taken,
otherw~ise, the r.:ponse is relayed to the client}

i :- 0;

loop

assert dominates(l~call.level) and
(all call:sendmessage. dominates(l~call.level) -

[h4.- ghost(call,GhostTable) if f has.ghost(call.GhostTable-sh)] and
(map-..rto-.ghost (call ,GhostTable)-

365

map-.onto-.ghoat (call, GhostTable-s.h)] and
(pending.ops Ccall. level) - pending-op..sh (call. level.)] and

(has-.acces~call,OPEIIFOR) iff has-.access~call,OPEIFOR-sh) I and
[write-.locked-.by-.another (call, openat) if f
write-.locked-.by-.another (call. openat-..h)J and

[already-.open(call, OPENAT) iff already-.open(call.,OPENAT-o~h)]) and
[call - call-shi and

[purge (outto(kport ,myid)) - p'urge(outto(kport..sh~myid))];

if Oizie(peuding-.ops(eall level)) then leave;
elif call.level - pending-.opscall.level)Ci).level and

call .transaclbl - pending-.ops(call. level) (i).transaclbl
then

aldcall :- pending..ops~call.level) i);
oldcall-..h :- pending.ops-.sh(call.level) i);

pending-.ops (call. level) :-
pending-.ops~call.level) with Cseqomit(i));

pending.ops-..h(call-..h. level)-
pending..ops-.sh(call-sh.level) with (seqomit(i));

assert
dominates (i,call. level) and

(all call:sendmessage. dominateu(l.call.level)-
[has..ghost (call, GhostTable) if f has-.ghost (cal,Ghost Yable-.sh)] and
(map-.onto..ghout (call ,GhoutTable)
map.onto-.ghout (call. GhostTable-.sh) J and

[pending-.ops(call. level) - pending-.ops-..h(call. level)] and
[has-access(call,OPEZUFOR) iff h~ao-accesu(callOPENFOR-sh) I and
[wirite-.locked-.byanother(call ,openat) if f
write-.lockedbyanother (call ,openat-sh)I and

[already.open(call, OPEIAT) if f already.open(call , PETIAT-sh)]) and
(call - cal..sh] and
[oldcall -oldcali..sh] and

[oldcall.level -call.levelJ and
[purge~outto(kport .myid)) -purge(outto(lcport-sh,myid))];

if not call.reply.error
then

case oldcall invoke, operation

is OpenFile:

if unset(call.reply.objlbl) -oldcall.level and
(mode-.param(oldcall.invoke.paran) -write or
mode..param(oldcall.invoke.param) fteadWrite) and

366 APPENDIX B. TRANSFORMED SPECIFICATIONS FOR THE FILE MANAGER

not write-ocked.by-.another (call ,OPENAT)
then

update.OPENFOR(oldcall, OPENFOR);
updat....OPENAT(oldcall, OPENAT);

reply :- fill-reply~oldcall. thiuproc .thishost,
DD.false.NoMeng);

send reply to kport.

update-.OPENFOR(oldcall-sh, OPENFOR-.sh);
update-.OPENAT(oldcallsoh, OPENAT-.sh);

reply-s.h :- fill-reply(oldcallsoh.thisproc .thishost,
DD.false,NoMesg);

send reply..sh to kport..sh;

elif (dominates Coldcall. level,
unset(call.reply.objlbl)) and

mode..param~oldcall .invoke.param) -read)
then

host-.call :- fill-call(oldcall .CreateODBEntry,
thisproc ,thishost);

pending-.ope(oldcall. level)

pending.ops (oldcall. level) <:oldcall
with (.invoke.operation :- marker2);

send host-.call to kport;

host-.cll-sh :-
fill-call(oldcallsoh.CreateODBEntry ,thisproc.

thishost);
pending..ops..sh(oldcallsoh.level)

pending-.ops..sh(oldcall-sh. level) c:
oldcall-sh with

(invokeoperation :- marker2);
send host-.call-sh to kport..sh;

else
reply :-fill-reply~oldcall ,thisproc ,thishost ,DD.

true .tioPermission);
send reply to kport;
reply-.sh :- fill-.reply (oldcall-sh ,thisproc ,thishost,

DD ,true,NfoPermision);
send reply-.sh to kport-.sh;

end;

is marker2:

host-.call : - fill-call Coldcall .CopyODflEntry.
thisproc ,thishost);

pending.ops (oldeall. level)
pending-.opa Coldcall. level) :oldcall with
(.involce.operation :- mariceri);

send host-.call to kport;

367

host-.call-sh :- fill-.call (oldcall-sh.CopyODBEntry.
thisproc ,thishost);

pending-.ops..h~oldcallsoh. level):
pending..ops-..h(oldcall-sh. level)<:
oldcall-sh with
Cinvokeaoperation :- markeri);

send host-.call-sh to kport-.sh;

is markeri:

update-.OPENFOR~oldcall. OPEIIFOR);
update-.OPENAT(oldcall. OPEIJAT);

update-.GT(oldcall ,GhostTable);
reply :- fill-.reply~oldcall,thisproc ,thishost ,DD,

false, NoMesg);

send reply to kport;

update-.OPENFOR~oldcall-sh, OPEIUFOR-.sh);
updatt-.OPENAT~oldcall-o.h, OPENAT-.sh);

update.0T (oldcall..h . hostTable..sh);
reply-.sh :- Iill-reply (oldcall..sh,thisproc ,thishost,

DD ,false, NoMeog);
send reply-.sh to kport-.sh;

is DeleteFile:

purgeOPEIIFOR(call ,OPENFOR);
purge-OPEflAT(call, OPEHIAT);

purge-O.T(call, GhostTable);
reply :- fill-.reply~oldcall.thisproc ,thishost.DD,

false,lioMe ag);
send reply to kpart;

purge-.OPEIFOR(call-sh ,OPENIFR-.sh);
purge-O.PE[AT (call-sh, OPEHTAT-sh);

purge-.GT(callsoh.GhostTable-.sh);
reply..sh :- fill-eply~oldcall-..h.thisproc ,thishost,

DD ,false, MoMeag);
send reply-.sh to kport.sh;

else: {case}

reply : - fill-reply~oldcall ,thisproc ,thishost,
call.reply.param,call.reply.error~call.reply.errcode),

send reply to kport;
reply-.sh:- fill-reply(oldcall-sh.thisproc ,thishout,
call-sh. reply. param, call-sh. reply. error,

368APPENDIX B. TRANSFORMED SPECIFICATIONS FOR THE FILE MANAGER

call-sh.reply.errcode);
send replysh to kport.sh;

end; {case}

leave;

else {if not call.reply.error}

reply :- fill-reply(oldcallthisproc,thishost,

DD,call.reply.error,call.reply.errcode);

send reply to kport; {relay kernel's reply back to client}

replysh :=

fill-reply(oldcallsh,thisprocthishostDD.

call.sh.reply.error,call-sh.reply.errcode);

send reply-sh to kport.sh;

leave;

end; {if not reply.error}

else {if i

i := i + 1:
end;(if i > size(pendingops)}

end; {loop)

end; {if InvokeOp}

else (of of dominates. .----....----....----....----....----....----

if call.control = InvokeOp

then

tmpcall :- call;

tmpcall.invoke.object :- map.ontoghost(callGhostTable);

case call.invoke.operation

is Openfile:

if already- open(tmpcall. openat) or already.open(call, openat)

then

reply := fill -reply(call,thisproc. thishoat. DD, true, Alreadyopen);

369

mend reply to kport;

elif write-.lockced-.by.another~call ,openat) and
Cmode-.paam(call.invoke.param) -write or

mode-.param(call. invoke.param) -ReadWrite)
then

reply :-

fill-reply~call .thisproc .thishomt ,DD,true , mUse);
send reply to lcport;

else
host-.call :- fill-.call(call,ReadSDBEntry,thisproc ,thianost);
pending-.ops~call.level) :- pending-.ops(call.level) <: call;
send host-.call to kport;

end; (if already-..open)

is ReadFile:

if not ham..access(tmpcall, openf or) or
not already-.open(tmpcall ,openat)

then
reply :- fill-.reply(call.thiproc,thishostDD.true.HlotOpen);

mend reply to kport;
elsme

host-call :-fill-.call-temp (call. map-.onto-.ghomt (call,
GMOSTTABLE) ,ReadODBEntry. thisproc ,thishomt);

pending..opm (call level) :-
pending-ope~call.level) <: call;

mend homt-.call to kport;
end; (if not ham..access}

is WriteFile:

if not ham..accemm~call, openf or) or
not already-.open(call ,openat)

then
reply :- f ill-.reply (call, thiproc, thimhoot, DOtrue, NotOpen);

send reply to kport;

else
homt-call :- fill-call(call.WriteODBEntry~thisproc~thimhost);

370APPENDIX B. TRANSFORMED SPECIFICATIONS FOR THE FILE MANAGER

pending.ops (call, level) :-
pending..ops (call . level) <:call;

send host-.call to kport;

end; (if not has-.access}

is CloseFile:

if not has-.acceus(tinpcall, openf or) or
not already..open(tmpcall .openat)

then
reply :- f ill-.reply (call thiproc. thishost. DD, true,.UotOpen);

send reply to Icport;

else
purge-.openfor(tmpcall ,openf or);
purge-.openat Ctmpcall .openat);

puxge-..T Ctmpcall .GhostTable);

end; (if not has-.access)

if tmpcall .invoke, object ne call. invoke .obj Oct
then

host-.call :- fill-call-.temp~call ,map-.onto..ghost (call,
GHaSTTABLE),Rem.~ieODBEntry thisproc .thishost);

pending-.ops (call. level) :- pending-.ops (call. level) <: call;
sond host-.call to kport,

end;

is CreateFile:

host-call:- fill-.call(callCreateODBEntry~thisproc,thishomt);
pending-.opsCcall.level) :- pending..ops(call.level) <:call;
send host-.call to kport;

is DeleteFile:

host.call:- fill-.call~call,RemoveODfEntry,thisproc.thishost);
pending-ops (call. level) :- pending.ops (call. level) <:call;
send host-.call to kport;

else: (of cas.}
reply :- f ill-reply (call, thisproc, thishost, DD, true, Undef Op);

send reply to kport;

end; {case}

371

else {if call.control -ReplyOp}

{REPLIES FROM THE KERNEL -

in cases where an entry exists in pending-.ops for the reply, additional
action is taken,
otherwise, the response is relayed to the client)

i :- 0;.

loop
assert
not dominates(l,call.level) and
(all call:sendmessage, dominates~l,call.level) ->

Z-as..ghost Ccall .GhostTable) if f has-ghost Ccall ,GhostTable-sh)] and
[map-.onto..ghost (call ,GhostTable) -
map-onto.ghost (call ,GhostTable-.sh)I and

[pending-.ops Ccall. level) -pending.ops-.sh~call. level)] and
[has-.acces(call.OPEIIFOR) iff has..access~callOPEFOR-sh) I and
(write-.locked-.by-.another(call ,openat) if f
write-.locked-.by-.another (call, openat..h) I and

[already-.open(call ,OPEIIAT) iff already-.open(call ,OPEIIATsh))) and
(purge Coutto(kport ,myid)) -purge Coutto(kport-.sh,myid) VI;

if i>uize~pending-.ops~call.level)) then leave;
elif call.level - pending-ops(call.level)Ci).level and

call.transaclbl = pending-ops(call. level) Ci) .transaclbl
then

oldcall :- pending-ops(calllevel)(i);

pending..ops (call. level) :-
pending-.ops~cal1.level) wzith (seqomit Ci));

if not call.reply.error
then

case oldcall. invoke, operation

is OpenFile:

372 APPENDIX B. TRANSFORMED SPECIFICATIONS FOR THE FILE MANAGER

if uneet(call.reply.objlbl) - oldcall.level and
(mode..param(oldcall.invoke.param) -write or
mod...param(oldcall.invoke.param) -ReadVrite) and

not write-.locked-.by..another (call, OPEIIAT)
then

update..opnfor(oldcall. openf or);
update-.openat(oldcall. openat);

reply :- fill-reply(oldcall ,thisproc .thishost,
DD,false.NoMesg);

send reply to kport;

elif (dominates Coldcall. level,
unset (call. reply. obj lbl)) and

mode-.param(oldcall. invoke .param) - read)
then

host-.call :-

fill..call Coldcall ,CreateODflEntry, thisproc,
thishost);

pending.ops(oldcall. level) :-
pending-ops Coldcall .level) coldcall
with C.invoke.operation :- marker2);

send host-.call to kport;

else
reply :- fill-reply(oldcall ,thisproc, thishost,

DD~t ueN~ erm ssio); mend reply to kport;

end;

is marker2:

host-.call :-

fill-.call (oldcall, CopyooaEntry, thisproc ,thishost);
pending..ops(oldcall. level) :

pending..ops(oldcall. level) <:oldcall with
C(invoke.operation :- markeri);

send host-.call to lcport;

is markeri:

update-.openfor(oldcall. openf or);
update..openat(oldcall, openat);

update-.GT~oldcallGhostTable);
reply :- fill-reply(oldcall ,thisproc ,thishost.

DD~false,11oMesg);
send reply to kport;

373

is DeleteFile:

puzge-.openf or (call. openf or);
purge.openat (call, openat);

purge..GT(call .GhostTable);

reply : - fill-reply(oldcall .thisproc .thishost,
DD~false.NoMesg);

send reply to kport;

else: {case}

reply :- fill..reply~oldcall ,thisproc .thishost,
call.reply.param,call.reply.errorcall.reply.errcode);

send reply to kport;

end; :case)

leave;

else (if not call.reply.error}

reply :- fill.reply~oldcall,thisproc~thishost .DD,
call reply. error *call .reply. errcode);

send reply to lcport;

leave;

end; (if not call.reply.error}

else (if i ..

i :- ± +1
end;{if i > size(pending-.ops)}

end; (loop)

end; (if InvokeOp}

end; (if doniinates}

end; (outermost loop)
end; (file-.manager)

end; (ado. scope)

374APPENDIX B. TRANSFORMED SPECIFICATIONS FOR THE FILE MANAGER

The function and type declarations are same as in the File Manager specifications given in
Appendix A.

Appendix C

Glossary

* ACI: Actual client identity.
The principal bound to a client process that is used for discretionary access control.
See section 3.6.4.

" ACL: Access control list.
Associated with each object, it is a list associated with an object that is used for
discretionary access controls to determine if a client process may access the object.

" C2: Command and control.
An application area defined by the Department of Defense (DoD).

" CCI: Contextual Client Identity.
An identity of a client from a particular context that includes a principal, project,
and role. Used for discretionary access control. See section 3.6.4.

* CI: Client identity.
Name for all the identities used by discretionary access control mechanisms to
identify a client process. See section 3.6.4.

* CSP: Concurrent Sequential Processes.
A language create by C.A.R. Hoare to describe the concurrent execution of pro-
cesses in a computer system.

* DBMS: Database management system.
Software that provides associated access to data.

" DAC: Discretionary access controls.
A security policy and mechanism used to control the access of clients to objects.
See section 3.6.4.

" DOS: Distributed operating system.
A set of software that allows the integration and interaction of applications exe-
cuting on more than one host.

375

376 APPENDIX C. GLOSSARY

DTCB: Distributed TCB.
The trusted computing based that executes across many hosts that enforces the
mandatory security policy in a secure distributed operating system. See section
5.1.3.

" DTLS: Descriptive top-level specification.
A specification of the interface of a system as seen from outside the system. See
section 3.5.

" FTLS: Formal top level specification.
A document that presents a formal description of interface of a software system.
Verification of the software requires that a formal correspondence be established
between the FTLS and the formal model.

" IACL: Initial access control list.
The default access control list that an object has before it is created.

" IP: Internet Protocol
A network layer protocol used throughout the Internet. See Section 3.5.

" MLS: Multilevel secure
A software or hardware component that is trusted to maintain and keep separate
information from more than one access class.

" NCSC: National Computer Security Center
The agency of the U.S. Government that establishes the evaluation criteria for
secure systems (see [DoD Criteria 85] and [NCSC TNI 871) and for evaluating sys-
tems' security for the government.

" NTCB: Network trusted computing base
Defined by the Trusted Network Interpretation [NCSC TNI 87] as the trusted com-
puting base in network systems.

" ODB: Object database
The component of the kernel that is responsible for maintaining the representation
of abstract objects on secondary storage. Object managers use it to store persistent
objects. It is a multi-level secure component of the trusted computing base in
SDOS.

" OSI: Open Systems Interconnection
A design methodology and model for building distributed system that is based on
layered communication between heterogeneous hosts. See Section 3.5.

" PDU: Protocol data units
Generic unit of information being transfered between peers in a communication
hierarchy. See section 3.5.

" PM: Process Manager
The SDOS manager that is responsible for the management of processes. The
Process Manager executes on every host and is a component of the kernel. See
section 3.6.2.

377

" SDB: Security Database
The Security Database is a component of the kernel that is responsible for main-
taining the security labels for all objects on the host. See Section 3.5.2.1.

" SDOS: Secure Distributed Operating System
Name of the system described in this report.

* SDU: Service data units
Generic unit of information being transferred between adjacent layers in a com-
munication hierarchy. See section 3.5.

" SNI: Strong noninterference
A security property on a procedure that says for any level 1 and any history of
message-passing events, a new history could be constructed by purging all events
not visible at level 1, including both parameter passing events and control events.
See Section 4.2

" TCP: Transport communication protocol
A DoD standard connection-based transport layer protocol that is implemented
on top of IP.

" TCSEC: Trusted Computer System Evaluation Criteria
The Orange Book produced by the National Computer Security Center that is used
to evaluate the security of centralized computer systems (see [DoD Criteria 85]).

" TIP: Terminal Interface Process
A trusted, multi-level secure process in SDOS that provides a trusted path for users
to other MLS components. It is a user interface process. See [DoD Criteria 851 for
a complete description.

" TNI: Trusted Network Interpretation
The equivalent of the Trusted Computer System Evaluation Criteria (Orange
Book) for network systems, it is used to evaluate the security of network systems
(see [NCSC TNI 87I).

" UID: Unique identifier
A unique identifier that is used by the SDOS kernel to locate and identify an
object.

" UNO: Unique number
A component of a UID, a unique number is generated by concatenating the host
identifier with a sequence number.

" WNI: Weak noninterference

WNI states that for every trace a there is another trace al which bears a certain
relation to a. See section 4.2.2.3.

Bibliography

[Bell and LaPadula 761 Bell, D.E., LaPadula, L.J., "Secure Computer Sys-
tems: Unified Exposition and Multics Interpretation,"
Mitre Corp. Technical Report MTR-2997, Revision 2,
March 1976.

[Berets et al. 85] Berets, J.C., Mucci, R.A., Schantz, R.E., "Cronus:
A Testbed for Developing Distributed Systems," Pro-
ceedings of the IEEE MILCOM Communications Con-
ference, October 1985.

[Biba 771 Biba, K.J., "Integrity Considerations For Secure Com-
puter Systems," Mitre Corp. Technical Report MTR-

15Y, April 1977.

[Brookes et al. 84] Brookes, S.D., Hoare, C.A.R., Roscoe, A.W., "A The-
ory of Communicating Sequential Processes", Journal
of the ACM, vol. 31, no. 3, 1984.

[Casey et al. 88] Casey, T.A., Vinter, S.T., Weber, D.G., Varadarajan,
R., Rosenthal, D., "A Secure Distributed Operating
System", Proceedings of the 1988 IEEE Symposium
on Security and Privacy, April 1988.

[Cronus 88] BBN Laboratories, "Cronus User's Reference Man-
ual," January 1988.

[DoD Criteria 85] "Department of Defense Trusted Computer System
Evaluation Criteria", National Computer Security
Center, Standard DOD 5200.28-STD, December 1985.

[DoD Guidance 85] "Guidance for Applying the DoD Trusted Computer
System Evaluation Criteria in Specific Environments",
DoD Computer Security Center, CSC-STD-004-85,
June 1985.

[DoD Password 85] "Department of Defense Password Management
Guideline", DoD Computer Security Center, CSC-
STD-002-85, June 1985.

379

380 BIBLIOGRAPHY

[Goguen and Meseguer 82] Goguen, J.A., Meseguer, J., "Security Policy and Se-
curity Models," Proceedings of the IEEE Symposium
on Securty and Privacy, 1982.

[Good et al. 78] Good, G.I., et al., "Report on the Gypsy Language,
Version 2.0," Technical Report TR ICSCA-CMP-lO,
Institute of Computer Science, University of Texas,
Austin, September 1978.

[Jones 78] Jones, A.K., "The Object Model: A Conceptual Tool
for Structuring Software," Operating Systems, An Ad-
vanced Course; Lecture Notes in Computer Science,
Springer-Verlag, Editors Bayer, Graham, and Seeg-
muller, 1978.

[Lamport 78] Lamport, L., "Time, Clocks, and the Ordering of
Events in a Distributed System", Communications of
the ACM, vol. 21, no. 7, 1978.

[Landwehr 83] Landwehr, C.E., "The Best Available Technologies for
Computer Security," IEEE Computer, vol. 16, no. 7,
July 1983.

[Landwehr et al. 84] Landwehr, C.E., Heitmeyer, C.L., McLean, J., "A Se-
curity Model for Military Message Systems," Naval
Research Laboratory Report 8806, May 1984.

[McCauley and Drongowski 79] McCauley, E.J., Drongowski, P.J., "KSOS - The De-
sign of a Secure Operating System," Proceedings of the
AFIPS National Computer Conference, June 1979.

[McCullough 87] McCullough, D. "Specifications for Multi-Level Secu-
rity and a Hook-Up Property", Proceedings of the 1987
IEEE Symposium on Security and Privacy, May 1987.

[NCSC TNI 87] "Trusted Network Interpretation of the TCSEC",
National Computer Security Center, NCSC-TG-005,
Version-i, July 1987.

[Reed and Kanodia 79] Reed, D.P., and Kanodia, R.K., "Synchronization
with Eventcounts and Sequencers", Communications
of the ACM, Vol. 22, No. 2, February 1979, pp. 115-
124.

[Schantz et al. 86] Schantz, R., Thomas, R., Bono, G., "The Architec-
ture of the Cronus Distributed Operating System,"
Proceedings of the IEEE 6th International Conference
on Distributed Computing Systems, Boston, MA, May
1986, pp 250-259.

BIBLIOGRAPHY 381

[Schell and Tao 84] Schell, R. R., and Tao, T. F., "Microcomputer-
Based Trusted Systems for Communication and Work-
station Applications," Proceedings of the 7th An-
nual DoD/NBS Computer Security Conference, NBS,
Gaithersburg, MD, Sept. 1984.

[Sullivan 861 Sullivan, E.C., Lunt, T. F., Proctor, N., "A Multilevel
Object Security Model," RADC-TR-86-10, March
1986.

[Ulysses 871 "Foundations of Ulysses: The Theory of Security",
ORA Tech. Report for RADC contract F30602-85-C-
0098, April 1987.

[Vinter 88] "Extended Discretionary Access Controls," Proceed.
ings of the 1988 IEEE Symposium on Security and
Privacy, April 1988.

[Weber87] Weber, D.G., and Lubarsky, R., "The SDOS Project-
Verifying Hook-up Security," Proceedings of the 3rd

Aerospace Computer Security Conference, December
1987.

[Workshop 85] Proceedings of the Department of Defense Computer
Security Center Invitational Workshop on Network Se-
curity, March 1985.

[Young et al. 87] Young, M., Tevanian, A., Rashid, R., Golub, D., Ep-
pinger, J., Chew, J., Bolosky, W., Black, D., Baron,
R., "The Duality of Memory and Communication in
the Implementation of a Multiprocessor Operating
System," Proceedings of the Eleventh A CM Sympo-
sium on Operating System Principles, November 1987.

I l I I I I - 0 1 l eI < YI II i ,

MISSION N

of
Rae Air Development Center

.N . cc 5 . , TC ,L, CU .Ad 9, sC "

ESC 1- 0 cc-c s S0 ESO J L<AC i~ L~

i(y" - i Pl i a i c I L i l l

C C II t I ~ c' it s In Co d d~ c C' b t
Il 1: z c, Cr _ fC C c t cC I

L '0C C C

